Introduction

MISP logo

The MISP threat sharing platform is a free and open source software helping information sharing of threat intelligence including cyber security indicators, financial fraud or counter-terrorism information. The MISP project includes multiple sub-projects to support the operational requirements of analysts and improve the overall quality of information shared.

MISP galaxy is a simple method to express a large object called cluster that can be attached to MISP events or attributes. A cluster can be composed of one or more elements. Elements are expressed as key-values. There are default vocabularies available in MISP galaxy but those can be overwritten, replaced or updated as you wish. Existing clusters and vocabularies can be used as-is or as a template. MISP distribution can be applied to each cluster to permit a limited or broader distribution scheme. The following document is generated from the machine-readable JSON describing the MISP galaxy.

Funding and Support

The MISP project is financially and resource supported by CIRCL Computer Incident Response Center Luxembourg .

CIRCL logo

A CEF (Connecting Europe Facility) funding under CEF-TC-2016-3 - Cyber Security has been granted from 1st September 2017 until 31th August 2019 as Improving MISP as building blocks for next-generation information sharing.

CEF funding

If you are interested to co-fund projects around MISP, feel free to get in touch with us.

MISP galaxy

Android

Android malware galaxy based on multiple open sources..

Android is a cluster galaxy available in JSON format at this location The JSON format can be freely reused in your application or automatically enabled in MISP.
authors

Unknown

CopyCat

CopyCat is a fully developed malware with vast capabilities, including rooting devices, establishing persistency, and injecting code into Zygote – a daemon responsible for launching apps in the Android operating system – that allows the malware to control any activity on the device.

Table 1. Table References

Links

https://blog.checkpoint.com/2017/07/06/how-the-copycat-malware-infected-android-devices-around-the-world/

Andr/Dropr-FH

Andr/Dropr-FH can silently record audio and video, monitor texts and calls, modify files, and ultimately spawn ransomware.

Andr/Dropr-FH is also known as:

  • GhostCtrl

Table 2. Table References

Links

https://nakedsecurity.sophos.com/2017/07/21/watch-out-for-the-android-malware-that-snoops-on-your-phone/

https://www.neowin.net/news/the-ghostctrl-android-malware-can-silently-record-your-audio-and-steal-sensitive-data

Judy

The malware, dubbed Judy, is an auto-clicking adware which was found on 41 apps developed by a Korean company. The malware uses infected devices to generate large amounts of fraudulent clicks on advertisements, generating revenues for the perpetrators behind it.

Table 3. Table References

Links

http://fortune.com/2017/05/28/android-malware-judy/

https://blog.checkpoint.com/2017/05/25/judy-malware-possibly-largest-malware-campaign-found-google-play/

RedAlert2

The trojan waits in hiding until the user opens a banking or social media app. When this happens, the trojan shows an HTML-based overlay on top of the original app, alerting the user of an error, and asking to reauthenticate. Red Alert then collects the user’s credentials and sends them to its C&C server.

Table 4. Table References

Links

https://www.bleepingcomputer.com/news/security/researchers-discover-new-android-banking-trojan/

Tizi

Tizi is a fully featured backdoor that installs spyware to steal sensitive data from popular social media applications. The Google Play Protect security team discovered this family in September 2017 when device scans found an app with rooting capabilities that exploited old vulnerabilities. The team used this app to find more applications in the Tizi family, the oldest of which is from October 2015. The Tizi app developer also created a website and used social media to encourage more app installs from Google Play and third-party websites.

Table 5. Table References

Links

https://security.googleblog.com/2017/11/tizi-detecting-and-blocking-socially.html

DoubleLocker

DoubleLocker can change the device’s PIN, preventing victims from accessing their devices, and also encrypts the data requesting a ransom. It will misuse accessibility services after being installed by impersonating the Adobe Flash player - similar to BankBot.

Table 6. Table References

Links

https://www.welivesecurity.com/2017/10/13/doublelocker-innovative-android-malware/

Svpeng

Svpeng is a Banking trojan which acts as a keylogger. If the Android device is not Russian, Svpeng will ask for permission to use accessibility services. In abusing this service it will gain administrator rights allowing it to draw over other apps, send and receive SMS and take screenshots when keys are pressed.

Svpeng is also known as:

  • Invisble Man

Table 7. Table References

Links

https://securelist.com/a-new-era-in-mobile-banking-trojans/79198/

https://www.theregister.co.uk/2017/08/02/banking_android_malware_in_uk/

LokiBot

LokiBot is a banking trojan for Android 4.0 and higher. It can steal the information and send SMS messages. It has the ability to start web browsers, and banking applications, along with showing notifications impersonating other apps. Upon attempt to remove it will encrypt the devices' external storage requiring Bitcoins to decrypt files.

Table 8. Table References

Links

https://clientsidedetection.com/lokibot_the_first_hybrid_android_malware.html[https://clientsidedetection.com/lokibot_the_first_hybrid_android_malware.html]

BankBot

The main goal of this malware is to steal banking credentials from the victim’s device. It usually impersonates flash player updaters, android system tools, or other legitimate applications.

Table 9. Table References

Links

https://blog.fortinet.com/2017/09/19/a-look-into-the-new-strain-of-bankbot

https://forensics.spreitzenbarth.de/android-malware/

Viking Horde

In rooted devices, Viking Horde installs software and executes code remotely to get access to the mobile data.

Table 10. Table References

Links

http://www.alwayson-network.com/worst-types-android-malware-2016/

HummingBad

A Chinese advertising company has developed this malware. The malware has the power to take control of devices; it forces users to click advertisements and download apps. The malware uses a multistage attack chain.

Table 11. Table References

Links

http://www.alwayson-network.com/worst-types-android-malware-2016/

http://blog.checkpoint.com/wp-content/uploads/2016/07/HummingBad-Research-report_FINAL-62916.pdf

Ackposts

Ackposts is a Trojan horse for Android devices that steals the Contacts information from the compromised device and sends it to a predetermined location.

Table 12. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2012-072302-3943-99

Wirex

Wirex is a Trojan horse for Android devices that opens a backdoor on the compromised device which then joins a botnet for conducting click fraud.

Table 13. Table References

Links

https://krebsonsecurity.com/2017/08/tech-firms-team-up-to-take-down-wirex-android-ddos-botnet/

http://www.zdnet.com/article/wirex-ddos-malware-given-udp-flood-capabilities/

WannaLocker

WannaLocker is a strain of ransomware for Android devices that encrypts files on the device’s external storage and demands a payment to decrypt them.

Table 14. Table References

Links

https://fossbytes.com/wannalocker-ransomware-wannacry-android/

Switcher

Switcher is a Trojan horse for Android devices that modifies Wi-Fi router DNS settings. Swticher attempts to infiltrate a router’s admin interface on the devices' WIFI network by using brute force techniques. If the attack succeeds, Switcher alters the DNS settings of the router, making it possible to reroute DNS queries to a network controlled by the malicious actors.

Table 15. Table References

Links

http://www.zdnet.com/article/this-android-infecting-trojan-malware-uses-your-phone-to-attack-your-router/

https://www.theregister.co.uk/2017/01/03/android_trojan_targets_routers/

https://www.symantec.com/security_response/writeup.jsp?docid=2017-090410-0547-99

Vibleaker

Vibleaker was an app available on the Google Play Store named Beaver Gang Counter that contained malicious code that after specific orders from its maker would scan the user’s phone for the Viber app, and then steal photos and videos recorded or sent through the app.

Table 16. Table References

Links

http://news.softpedia.com/news/malicious-android-app-steals-viber-photos-and-videos-505758.shtml

ExpensiveWall

ExpensiveWall is Android malware that sends fraudulent premium SMS messages and charges users accounts for fake services without their knowledge

Table 17. Table References

Links

https://blog.checkpoint.com/2017/09/14/expensivewall-dangerous-packed-malware-google-play-will-hit-wallet/

http://fortune.com/2017/09/14/google-play-android-malware/

Cepsohord

Cepsohord is a Trojan horse for Android devices that uses compromised devices to commit click fraud, modify DNS settings, randomly delete essential files, and download additional malware such as ransomware.

Table 18. Table References

Links

https://www.cyber.nj.gov/threat-profiles/android-malware-variants/cepsohord

Fakem Rat

Fakem RAT makes their network traffic look like well-known protocols (e.g. Messenger traffic, HTML pages).

Table 19. Table References

Links

https://www.trendmicro.de/cloud-content/us/pdfs/security-intelligence/white-papers/wp-fakem-rat.pdf

https://www.symantec.com/security_response/writeup.jsp?docid=2016-012608-1538-99

GM Bot

GM Bot – also known as Acecard, SlemBunk, or Bankosy – scams people into giving up their banking log-in credentials and other personal data by displaying overlays that look nearly identical to banking apps log-in pages. Subsequently, the malware intercepts SMS to obtain two-factor authentication PINs, giving cybercriminals full access to bank accounts.

GM Bot is also known as:

  • Acecard

  • SlemBunk

  • Bankosy

Table 20. Table References

Links

https://blog.avast.com/android-trojan-gm-bot-is-evolving-and-targeting-more-than-50-banks-worldwide

Moplus

The Wormhole vulnerability in the Moplus SDK could be exploited by hackers to open an unsecured and unauthenticated HTTP server connection on the user’s device, and this connection is established in the background without the user’s knowledge.

Table 21. Table References

Links

http://securityaffairs.co/wordpress/41681/hacking/100m-android-device-baidu-moplus-sdk.html

Adwind

Adwind is a backdoor written purely in Java that targets system supporting the Java runtime environment. Commands that can be used, among other things, to display messages on the system, open URLs, update the malware, download/execute files, and download/load plugins. According to the author, the backdoor component can run on Windows, Mac OS, Linux and Android platforms providing rich capabilities for remote control, data gathering, data exfiltration and lateral movement.

Adwind is also known as:

  • AlienSpy

  • Frutas

  • Unrecom

  • Sockrat

  • Jsocket

  • jRat

  • Backdoor:Java/Adwind

Table 22. Table References

Links

https://securelist.com/adwind-faq/73660/

AdSms

Adsms is a Trojan horse that may send SMS messages from Android devices.

Table 23. Table References

Links

https://www.fortiguard.com/encyclopedia/virus/7389670

https://www.symantec.com/security_response/writeup.jsp?docid=2011-051313-4039-99

Airpush

Airpush is a very aggresive Ad - Network

Airpush is also known as:

  • StopSMS

Table 24. Table References

Links

https://crypto.stanford.edu/cs155old/cs155-spring16/lectures/18-mobile-malware.pdf

BeanBot

BeanBot forwards device’s data to a remote server and sends out premium-rate SMS messages from the infected device.

Table 25. Table References

Links

https://www.f-secure.com/v-descs/trojan_android_beanbot.shtml

Kemoge

Kemoge is adware that disguises itself as popular apps via repackaging, then allows for a complete takeover of the users Android device.

Table 26. Table References

Links

https://www.fireeye.com/blog/threat-research/2015/10/kemoge_another_mobi.html

https://www.symantec.com/security_response/writeup.jsp?docid=2015-101207-3555-99

Ghost Push

Ghost Push is a family of malware that infects the Android OS by automatically gaining root access, downloading malicious software, masquerading as a system app, and then losing root access, which then makes it virtually impossible to remove the infection even by factory reset unless the firmware is reflashed.

Table 27. Table References

Links

https://en.wikipedia.org/wiki/Ghost_Push

https://blog.avast.com/how-to-protect-your-android-device-from-ghost-push

BeNews

The BeNews app is a backdoor app that uses the name of defunct news site BeNews to appear legitimate. After installation it bypasses restrictions and downloads additional threats to the compromised device.

Table 28. Table References

Links

http://blog.trendmicro.com/trendlabs-security-intelligence/fake-news-app-in-hacking-team-dump-designed-to-bypass-google-play/

Accstealer

Accstealer is a Trojan horse for Android devices that steals information from the compromised device.

Table 29. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2015-012711-1159-99

Acnetdoor

Acnetdoor is a detection for Trojan horses on the Android platform that open a back door on the compromised device.

Table 30. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2012-051611-4258-99

Acnetsteal

Acnetsteal is a detection for Trojan horses on the Android platform that steal information from the compromised device.

Table 31. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2012-051612-0505-99

Actech

Actech is a Trojan horse for Android devices that steals information and sends it to a remote location.

Table 32. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2012-080111-3948-99

AdChina

AdChina is an advertisement library that is bundled with certain Android applications.

Table 33. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-032814-2947-99

Adfonic

Adfonic is an advertisement library that is bundled with certain Android applications.

Table 34. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-052615-0024-99

AdInfo

AdInfo is an advertisement library that is bundled with certain Android applications.

Table 35. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-040416-2433-99

Adknowledge

Adknowledge is an advertisement library that is bundled with certain Android applications.

Table 36. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-052822-1033-99

AdMarvel

AdMarvel is an advertisement library that is bundled with certain Android applications.

Table 37. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-060621-2450-99

AdMob

AdMob is an advertisement library that is bundled with certain Android applications.

Table 38. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-052822-3437-99

Adrd

Adrd is a Trojan horse that steals information from Android devices.

Table 39. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2011-021514-4954-99

Aduru

Aduru is an advertisement library that is bundled with certain Android applications.

Table 40. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-052618-2419-99

Adwhirl

Adwhirl is an advertisement library that is bundled with certain Android applications.

Table 41. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-052918-1414-99

Adwlauncher

Adwlauncher is a Trojan horse for Android devices that steals information from the compromised device.

Table 42. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2012-082308-1823-99

Adwo

Adwo is an advertisement library that is bundled with certain Android applications.

Table 43. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-032814-5806-99

Airad

Airad is an advertisement library that is bundled with certain Android applications.

Table 44. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-032815-1704-99

Alienspy

Alienspy is a Trojan horse for Android devices that steals information from the compromised device. It may also download potentially malicious files.

Table 45. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2015-042714-5942-99

AmazonAds

AmazonAds is an advertisement library that is bundled with certain Android applications.

Table 46. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-052618-5002-99

Answerbot

Answerbot is a Trojan horse that opens a back door on Android devices.

Table 47. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2011-100711-2129-99

Antammi

Antammi is a Trojan horse that steals information from Android devices.

Table 48. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2012-032106-5211-99

Apkmore

Apkmore is an advertisement library that is bundled with certain Android applications.

Table 49. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-040113-4813-99

Aplog

Aplog is a Trojan horse for Android devices that steals information from the device.

Table 50. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2012-100911-1023-99

Appenda

Appenda is an advertisement library that is bundled with certain Android applications.

Table 51. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2012-062812-0516-99

Apperhand

Apperhand is an advertisement library that is bundled with certain Android applications.

Table 52. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-032815-5637-99

Appleservice

Appleservice is a Trojan horse for Android devices that may steal information from the compromised device.

Table 53. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-031011-4321-99

AppLovin

AppLovin is an advertisement library that is bundled with certain Android applications.

Table 54. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-040112-1739-99

Arspam

Arspam is a Trojan horse for Android devices that sends spam SMS messages to contacts on the compromised device.

Table 55. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2011-121915-3251-99

Aurecord

Aurecord is a spyware application for Android devices that allows the device it is installed on to be monitored.

Table 56. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-031914-2310-99

Backapp

Backapp is a Trojan horse for Android devices that steals information from the compromised device.

Table 57. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2012-092708-5017-99

Backdexer

Backdexer is a Trojan horse for Android devices that may send premium-rate SMS messages from the compromised device.

Table 58. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2013-121812-2502-99

Backflash

Backflash is a Trojan horse for Android devices that opens a back door and steals information from the compromised device.

Table 59. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2013-091714-0427-99

Backscript

Backscript is a Trojan horse for Android devices that downloads files onto the compromised device.

Table 60. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2012-090704-3639-99

Badaccents

Badaccents is a Trojan horse for Android devices that may download apps on the compromised device.

Table 61. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-123015-3618-99

Badpush

Badpush is an advertisement library that is bundled with certain Android applications.

Table 62. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-040311-4133-99

Ballonpop

Ballonpop is a Trojan horse for Android devices that steals information from the compromised device.

Table 63. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2013-120911-1731-99

Bankosy

Bankosy is a Trojan horse for Android devices that steals information from the compromised device.

Table 64. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-072316-5249-99

Bankun

Bankun is a Trojan horse for Android devices that replaces certain banking applications on the compromised device.

Table 65. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2013-072318-4143-99

Basebridge

Basebridge is a Trojan horse that attempts to send premium-rate SMS messages to predetermined numbers.

Table 66. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2011-060915-4938-99

Basedao

Basedao is a Trojan horse for Android devices that steals information from the compromised device.

Table 67. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2013-061715-3303-99

Batterydoctor

Batterydoctor is Trojan that makes exaggerated claims about the device’s ability to recharge the battery, as well as steal information.

Table 68. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2011-101916-0847-99

Beaglespy

Beaglespy is an Android mobile detection for the Beagle spyware program as well as its associated client application.

Table 69. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2012-091010-0627-99

Becuro

Becuro is a Trojan horse for Android devices that downloads potentially malicious files onto the compromised device.

Table 70. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2015-051410-3348-99

Beita

Beita is a Trojan horse for Android devices that steals information from the compromised device.

Table 71. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2013-110111-1829-99

Bgserv

Bgserv is a Trojan that opens a back door and transmits information from the device to a remote location.

Table 72. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2011-031005-2918-99

Biigespy

Biigespy is an Android mobile detection for the Biige spyware program as well as its associated client application.

Table 73. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2012-091012-0526-99

Bmaster

Bmaster is a Trojan horse on the Android platform that opens a back door, downloads files and steals potentially confidential information from the compromised device.

Table 74. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2012-020609-3003-99

Bossefiv

Bossefiv is a Trojan horse for Android devices that steals information.

Table 75. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2015-061520-4322-99

Boxpush

Boxpush is an advertisement library that is bundled with certain Android applications.

Table 76. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-040207-4613-99

Burstly

Burstly is an advertisement library that is bundled with certain Android applications.

Table 77. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-052918-1443-99

Buzzcity

Buzzcity is an advertisement library that is bundled with certain Android applications.

Table 78. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-052918-1454-99

ByPush

ByPush is an advertisement library that is bundled with certain Android applications.

Table 79. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-040315-4708-99

Cajino

Cajino is a Trojan horse for Android devices that opens a back door on the compromised device.

Table 80. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2015-040210-3746-99

Casee

Casee is an advertisement library that is bundled with certain Android applications.

Table 81. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-052919-3501-99

Catchtoken

Catchtoken is a Trojan horse for Android devices that intercepts SMS messages and opens a back door on the compromised device.

Table 82. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2013-121619-0548-99

Cauly

Cauly is an advertisement library that is bundled with certain Android applications.

Table 83. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-052919-3454-99

Cellshark

Cellshark is a spyware application for Android devices that periodically gathers information from the device and uploads it to a predetermined location.

Table 84. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2011-111611-0914-99

Centero

Centero is a Trojan horse for Android devices that displays advertisements on the compromised device.

Table 85. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2013-053006-2502-99

Chuli

Chuli is a Trojan horse for Android devices that opens a back door and may steal information from the compromised device.

Table 86. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2013-032617-1604-99

Citmo

Citmo is a Trojan horse for Android devices that steals information from the compromised device.

Table 87. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-030715-5012-99

Claco

Claco is a Trojan horse for Android devices that steals information from the compromised device.

Table 88. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2013-020415-5600-99

Clevernet

Clevernet is an advertisement library that is bundled with certain Android applications.

Table 89. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-040107-5257-99

Cnappbox

Cnappbox is an advertisement library that is bundled with certain Android applications.

Table 90. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-040215-1141-99

Cobblerone

Cobblerone is a spyware application for Android devices that can track the phone’s location and remotely erase the device.

Table 91. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2011-111514-3846-99

Coolpaperleak

Coolpaperleak is a Trojan horse for Android devices that steals information and sends it to a remote location.

Table 92. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2012-080211-5757-99

Coolreaper

Coolreaper is a Trojan horse for Android devices that opens a back door on the compromised device. It may also steal information and download potentially malicious files.

Table 93. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2015-011220-3211-99

Cosha

Cosha is a spyware program for Android devices that monitors and sends certain information to a remote location.

Table 94. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2012-081712-5231-99

Counterclank

Counterclank is a Trojan horse for Android devices that steals information.

Table 95. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2012-012709-4046-99

Crazymedia

Crazymedia is an advertisement library that is bundled with certain Android applications.

Table 96. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-040312-2547-99

Crisis

Crisis is a Trojan horse for Android devices that opens a back door and steals information from the compromised device.

Table 97. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2015-071409-0636-99

Crusewind

Crusewind is a Trojan horse for Android devices that sends SMS messages to a premium-rate number.

Table 98. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2011-070301-5702-99

Dandro

Dandro is a Trojan horse for Android devices that allows a remote attacker to gain control over the device and steal information from it.

Table 99. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2013-012916-2128-99

Daoyoudao

Daoyoudao is an advertisement library that is bundled with certain Android applications.

Table 100. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-040214-5018-99

Deathring

Deathring is a Trojan horse for Android devices that may perform malicious activities on the compromised device.

Table 101. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-121116-4547-99

Deeveemap

Deeveemap is a Trojan horse for Android devices that downloads potentially malicious files onto the compromised device.

Table 102. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2017-060907-5221-99

Dendoroid

Dendoroid is a Trojan horse for Android devices that opens a back door, steals information, and may perform other malicious activities on the compromised device.

Table 103. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-030418-2633-99

Dengaru

Dengaru is a Trojan horse for Android devices that performs click-fraud from the compromised device.

Table 104. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2015-051113-4819-99

Diandong

Diandong is an advertisement library that is bundled with certain Android applications.

Table 105. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-040207-2453-99

Dianjin

Dianjin is an advertisement library that is bundled with certain Android applications.

Table 106. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-040107-0313-99

Dogowar

Dogowar is a Trojan horse on the Android platform that sends SMS texts to all contacts on the device. It is a repackaged version of a game application called Dog Wars, which can be downloaded from a third party market and must be manually installed.

Table 107. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2011-081510-4323-99

Domob

Domob is an advertisement library that is bundled with certain Android applications.

Table 108. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-040416-4235-99

Dougalek

Dougalek is a Trojan horse for Android devices that steals information from the compromised device. The threat is typically disguised to display a video.

Table 109. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2012-041601-3400-99

Dowgin

Dowgin is an advertisement library that is bundled with certain Android applications.

Table 110. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-033108-4723-99

Droidsheep

Droidsheep is a hacktool for Android devices that hijacks social networking accounts on compromised devices.

Table 111. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-031014-3628-99

Dropdialer

Dropdialer is a Trojan horse for Android devices that sends SMS messages to a premium-rate phone number.

Table 112. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2012-070909-0726-99

Dupvert

Dupvert is a Trojan horse for Android devices that opens a back door and steals information from the compromised device. It may also perform other malicious activities.

Table 113. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2013-072313-1959-99

Dynamicit

Dynamicit is an advertisement library that is bundled with certain Android applications.

Table 114. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-040407-1346-99

Ecardgrabber

Ecardgrabber is an application that attempts to read details from NFC enabled credit cards. It attempts to read information from NFC enabled credit cards that are in close proximity.

Table 115. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2012-062215-0939-99

Ecobatry

Ecobatry is a Trojan horse for Android devices that steals information and sends it to a remote location.

Table 116. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2012-080606-4102-99

Enesoluty

Enesoluty is a Trojan horse for Android devices that steals information and sends it to a remote location.

Table 117. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2012-090607-0807-99

Everbadge

Everbadge is an advertisement library that is bundled with certain Android applications.

Table 118. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-040416-3736-99

Ewalls

Ewalls is a Trojan horse for the Android operating system that steals information from the mobile device.

Table 119. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2010-073014-0854-99

Exprespam

Exprespam is a Trojan horse for Android devices that displays a fake message and steals personal information stored on the compromised device.

Table 120. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2013-010705-2324-99

Fakealbums

Fakealbums is a Trojan horse for Android devices that monitors and forwards received messages from the compromised device.

Table 121. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2013-071819-0636-99

Fakeangry

Fakeangry is a Trojan horse on the Android platform that opens a back door, downloads files, and steals potentially confidential information from the compromised device.

Table 122. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2012-022823-4233-99

Fakeapp

Fakeapp is a Trojan horse for Android devices that downloads configuration files to display advertisements and collects information from the compromised device.

Table 123. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2012-022805-4318-99

Fakebanco

Fakebanco is a Trojan horse for Android devices that redirects users to a phishing page in order to steal their information.

Table 124. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-112109-5329-99

Fakebank

Fakebank is a Trojan horse that steals information from the compromised device.

Table 125. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2013-071813-2448-99

Fakebank.B

Fakebank.B is a Trojan horse for Android devices that opens a back door and steals information from the compromised device.

Table 126. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2013-101114-5645-99

Fakebok

Fakebok is a Trojan horse for Android devices that sends SMS messages to premium phone numbers.

Table 127. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-021115-5153-99

Fakedaum

Fakedaum is a Trojan horse for Android devices that steals information from the compromised device.

Table 128. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2013-061813-3630-99

Fakedefender

Fakedefender is a Trojan horse for Android devices that displays fake security alerts in an attempt to convince the user to purchase an app in order to remove non-existent malware or security risks from the device.

Table 129. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2013-060301-4418-99

Fakedefender.B

Fakedefender.B is a Trojan horse for Android devices that displays fake security alerts in an attempt to convince the user to purchase an app in order to remove non-existent malware or security risks from the device.

Table 130. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2013-091013-3953-99

Fakedown

Fakedown is a Trojan horse for Android devices that downloads more malicious apps onto the compromised device.

Table 131. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2013-041803-5918-99

Fakeflash

Fakeflash is a Trojan horse for Android devices that installs a fake Flash application in order to direct users to a website.

Table 132. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2012-070318-2122-99

Fakegame

Fakegame is a Trojan horse for Android devices that displays advertisements and steals information from the compromised device.

Table 133. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2013-040808-2922-99

Fakeguard

Fakeguard is a Trojan horse for Android devices that steals information from the compromised device.

Table 134. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2012-102908-3526-99

Fakejob

Fakejob is a Trojan horse for Android devices that redirects users to scam websites.

Table 135. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-030721-3048-99

Fakekakao

Fakekakao is a Trojan horse for Android devices sends SMS messages to contacts stored on the compromised device.

Table 136. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2013-071617-2031-99

Fakelemon

Fakelemon is a Trojan horse for Android devices that blocks certain SMS messages and may subscribe to services without the user’s consent.

Table 137. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2012-120609-3608-99

Fakelicense

Fakelicense is a Trojan horse that displays advertisements on the compromised device.

Table 138. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2013-062709-1437-99

Fakelogin

Fakelogin is a Trojan horse for Android devices that steals information from the compromised device.

Table 139. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2015-102108-5457-99

FakeLookout

FakeLookout is a Trojan horse for Android devices that opens a back door and steals information on the compromised device.

Table 140. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2012-101919-2128-99

FakeMart

FakeMart is a Trojan horse for Android devices that may send SMS messages to premium rate numbers. It may also block incoming messages and steal information from the compromised device.

Table 141. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2013-081217-1428-99

Fakemini

Fakemini is a Trojan horse for Android devices that disguises itself as an installation for the Opera Mini browser and sends premium-rate SMS messages to a predetermined number.

Table 142. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2011-110410-5958-99

Fakemrat

Fakemrat is a Trojan horse for Android devices that opens a back door and steals information from the compromised device.

Table 143. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2016-012608-1538-99

Fakeneflic

Fakeneflic is a Trojan horse that steals information from Android devices.

Table 144. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2011-101105-0518-99

Fakenotify

Fakenotify is a Trojan horse for Android devices that sends SMS messages to premium-rate phone numbers, collects and sends information, and periodically displays Web pages. It also downloads legitimate apps onto the compromised device.

Table 145. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2012-011302-3052-99

Fakepatch

Fakepatch is a Trojan horse for Android devices that downloads more files on to the device.

Table 146. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2012-062811-2820-99

Fakeplay

Fakeplay is a Trojan horse for Android devices that steals information from the compromised device and sends it to a predetermined email address.

Table 147. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2013-100917-3825-99

Fakescarav

Fakescarav is a Trojan horse for Android devices that displays fake security alerts in an attempt to convince the user to pay in order to remove non-existent malware or security risks from the device.

Table 148. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2015-012809-1901-99

Fakesecsuit

Fakesecsuit is a Trojan horse for Android devices that steals information from the compromised device.

Table 149. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2012-060514-1301-99

Fakesucon

Fakesucon is a Trojan horse program for Android devices that sends SMS messages to premium-rate phone numbers.

Table 150. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2011-120915-2524-99

Faketaobao

Faketaobao is a Trojan horse for Android devices that steals information from the compromised device.

Table 151. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2013-062518-4057-99

Faketaobao.B

Faketaobao.B is a Trojan horse for Android devices that intercepts and and sends incoming SMS messages to a remote attacker.

Table 152. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-012106-4013-99

Faketoken

Faketoken is a Trojan horse that opens a back door on the compromised device.

Table 153. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2012-032211-2048-99

http://bgr.com/2017/08/18/android-malware-faketoken-steal-credit-card-info/

Fakeupdate

Fakeupdate is a Trojan horse for Android devices that downloads other applications onto the compromised device.

Table 154. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2013-081914-5637-99

Fakevoice

Fakevoice is a Trojan horse for Android devices that dials a premium-rate phone number.

Table 155. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2012-040510-3249-99

Farmbaby

Farmbaby is a spyware application for Android devices that logs certain information and sends SMS messages to a predetermined phone number.

Table 156. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2012-090715-3641-99

Fauxtocopy

Fauxtocopy is a spyware application for Android devices that gathers photos from the device and sends them to a predetermined email address.

Table 157. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2011-111515-3940-99

Feiwo

Feiwo is an advertisement library that is bundled with certain Android applications.

Table 158. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-040107-4038-99

FindAndCall

FindAndCall is a Potentially Unwanted Application for Android devices that may leak information.

Table 159. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-031020-2906-99

Finfish

Finfish is a Trojan horse for Android devices that opens a back door and steals information from the compromised device.

Table 160. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2012-083016-0032-99

Fireleaker

Fireleaker is a Trojan horse for Android devices that steals information from the compromised device.

Table 161. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-031814-5207-99

Fitikser

Fitikser is a Trojan horse for Android devices that steals information from the compromised device.

Table 162. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-093015-2830-99

Flexispy

Flexispy is a Spyware application for Android devices that logs the device’s activity and sends it to a predetermined website.

Table 163. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2011-122006-4805-99

Fokonge

Fokonge is a Trojan horse that steals information from Android devices.

Table 164. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2011-071802-0727-99

FoncySMS

FoncySMS is a Trojan horse for Android devices that sends SMS messages to premium-rate phone numbers. It may also connect to an IRC server and execute any received shell commands.

Table 165. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2012-011502-2651-99

Frogonal

Frogonal is a Trojan horse for Android devices that steals information from the compromised device.

Table 166. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2012-062205-2312-99

Ftad

Ftad is an advertisement library that is bundled with certain Android applications.

Table 167. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-040114-2020-99

Funtasy

Funtasy is a Trojan horse for Android devices that subscribes the user to premium SMS services.

Table 168. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-092519-5811-99

GallMe

GallMe is an advertisement library that is bundled with certain Android applications.

Table 169. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-040312-1336-99

Gamex

Gamex is a Trojan horse for Android devices that downloads further threats.

Table 170. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2012-051015-1808-99

Gappusin

Gappusin is a Trojan horse for Android devices that downloads applications and disguises them as system updates.

Table 171. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2012-022007-2013-99

Gazon

Gazon is a worm for Android devices that spreads through SMS messages.

Table 172. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2015-030320-1436-99

Geinimi

Geinimi is a Trojan that opens a back door and transmits information from the device to a remote location.

Table 173. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2011-010111-5403-99

Generisk

Generisk is a generic detection for Android applications that may pose a privacy, security, or stability risk to the user or user’s Android device.

Table 174. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-062622-1559-99

Genheur

Genheur is a generic detection for many individual but varied Trojans for Android devices for which specific definitions have not been created. A generic detection is used because it protects against many Trojans that share similar characteristics.

Table 175. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-032613-0848-99

Genpush

Genpush is an advertisement library that is bundled with certain Android applications.

Table 176. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-033109-0426-99

GeoFake

GeoFake is a Trojan horse for Android devices that sends SMS messages to premium-rate numbers.

Table 177. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2012-040217-3232-99

Geplook

Geplook is a Trojan horse for Android devices that downloads additional apps onto the compromised device.

Table 178. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-121814-0917-99

Getadpush

Getadpush is an advertisement library that is bundled with certain Android applications.

Table 179. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-040112-0957-99

Ggtracker

Ggtracker is a Trojan horse for Android devices that sends SMS messages to a premium-rate number. It may also steal information from the device.

Table 180. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2011-062208-5013-99

Ghostpush

Ghostpush is a Trojan horse for Android devices that roots the compromised device. It may then perform malicious activities on the compromised device.

Table 181. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2015-100215-3718-99

Gmaster

Gmaster is a Trojan horse on the Android platform that steals potentially confidential information from the compromised device.

Table 182. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2011-082404-5049-99

Godwon

Godwon is a Trojan horse for Android devices that steals information.

Table 183. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2013-091017-1833-99

Golddream

Golddream is a Trojan horse that steals information from Android devices.

Table 184. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2011-070608-4139-99

Goldeneagle

Goldeneagle is a Trojan horse that steals information from Android devices.

Table 185. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2011-090110-3712-99

Golocker

Golocker is a Trojan horse for Android devices that steals information from the compromised device.

Table 186. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2012-062003-3214-99

Gomal

Gomal is a Trojan horse for Android devices that steals information from the compromised device.

Table 187. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-101312-1047-99

Gonesixty

Gonesixty is a Trojan horse that steals information from Android devices.

Table 188. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2011-093001-2649-99

Gonfu

Gonfu is a Trojan horse that steals information from Android devices.

Table 189. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2011-060610-3953-99

Gonfu.B

Gonfu.B is a Trojan horse that steals information from Android devices.

Table 190. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2012-030811-5215-99

Gonfu.C

Gonfu.C is a Trojan horse for Android devices that may download additional threats on the compromised device.

Table 191. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-031817-3639-99

Gonfu.D

Gonfu.D is a Trojan horse that opens a back door on Android devices.

Table 192. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2012-040414-1158-99

Gooboot

Gooboot is a Trojan horse for Android devices that may send text messages to premium rate numbers.

Table 193. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-031818-3034-99

Goodadpush

Goodadpush is an advertisement library that is bundled with certain Android applications.

Table 194. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-040108-0913-99

Greystripe

Greystripe is an advertisement library that is bundled with certain Android applications.

Table 195. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-052919-2643-99

Gugespy

Gugespy is a spyware program for Android devices that logs the device’s activity and sends it to a predetermined email address.

Table 196. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2012-071822-2515-99

Gugespy.B

Gugespy.B is a spyware program for Android devices that monitors and sends certain information to a remote location.

Table 197. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2013-070511-5038-99

Gupno

Gupno is a Trojan horse for Android devices that poses as a legitimate app and attempts to charge users for features that are normally free. It may also display advertisements on the compromised device.

Table 198. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2015-072211-5533-99

Habey

Habey is a Trojan horse for Android devices that may attempt to delete files and send SMS messages from the compromised device.

Table 199. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-100608-4512-99

Handyclient

Handyclient is an advertisement library that is bundled with certain Android applications.

Table 200. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-040307-5027-99

Hehe

Hehe is a Trojan horse for Android devices that blocks incoming calls and SMS messages from specific numbers. The Trojan also steals information from the compromised device.

Table 201. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-012211-0020-99

Hesperbot

Hesperbot is a Trojan horse for Android devices that opens a back door on the compromised device and may steal information.

Table 202. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2013-121010-1120-99

Hippo

Hippo is a Trojan horse that sends SMS messages to premium-rate phone numbers.

Table 203. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2011-071215-3547-99

Hippo.B

Hippo.B is a Trojan horse that sends SMS messages to premium-rate phone numbers.

Table 204. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-031915-0151-99

IadPush

IadPush is an advertisement library that is bundled with certain Android applications.

Table 205. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-040315-4104-99

iBanking

iBanking is a Trojan horse for Android devices that opens a back door on the compromised device and may steal information.

Table 206. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-030713-0559-99

Iconosis

Iconosis is a Trojan horse for Android devices that steals information from the compromised device.

Table 207. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2012-062107-3327-99

Iconosys

Iconosys is a Trojan horse for Android devices that steals information from the compromised device.

Table 208. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2012-081309-0341-99

Igexin

Igexin is an advertisement library that is bundled with certain Android applications.

Table 209. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2015-032606-5519-99

ImAdPush

ImAdPush is an advertisement library that is bundled with certain Android applications.

Table 210. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-040323-0218-99

InMobi

InMobi is an advertisement library that is bundled with certain Android applications.

Table 211. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-052713-1527-99

Jifake

Jifake is a Trojan horse for Android devices that sends SMS messages to premium-rate phone numbers.

Table 212. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2012-073021-4247-99

Jollyserv

Jollyserv is a Trojan horse for Android devices that sends SMS messages and steals information from the compromised device.

Table 213. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2013-090311-4533-99

Jsmshider

Jsmshider is a Trojan horse that opens a back door on Android devices.

Table 214. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2011-062114-0857-99

Ju6

Ju6 is an advertisement library that is bundled with certain Android applications.

Table 215. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-040416-2428-99

Jumptap

Jumptap is an advertisement library that is bundled with certain Android applications.

Table 216. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-052713-0859-99

Jzmob

Jzmob is an advertisement library that is bundled with certain Android applications.

Table 217. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-040207-1703-99

Kabstamper

Kabstamper is a Trojan horse for Android devices that corrupts images found on the compromised device.

Table 218. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2012-060706-2305-99

Kidlogger

Kidlogger is a Spyware application for Android devices that logs the device’s activity and sends it to a predetermined website.

Table 219. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2011-122014-1927-99

Kielog

Kielog is a Trojan horse for Android devices that logs keystrokes and sends the stolen information to the remote attacker.

Table 220. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2013-040205-4035-99

Kituri

Kituri is a Trojan horse for Android devices that blocks certain SMS messages from being received by the device. It may also send SMS messages to a premium-rate number.

Table 221. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2012-061111-5350-99

Kranxpay

Kranxpay is a Trojan horse for Android devices that downloads other apps onto the device.

Table 222. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2012-071009-0809-99

Krysanec

Krysanec is a Trojan horse for Android devices that opens a back door on the compromised device.

Table 223. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-090113-4128-99

Kuaidian360

Kuaidian360 is an advertisement library that is bundled with certain Android applications.

Table 224. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-040109-2415-99

Kuguo

Kuguo is an advertisement library that is bundled with certain Android applications.

Table 225. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-040315-5215-99

Lastacloud

Lastacloud is a Trojan horse for Android devices that steals information from the compromised device.

Table 226. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-121216-4334-99

Laucassspy

Laucassspy is a spyware program for Android devices that steals information and sends it to a remote location.

Table 227. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2012-092409-1822-99

Lifemonspy

Lifemonspy is a spyware application for Android devices that can track the phone’s location, download SMS messages, and erase certain data from the device.

Table 228. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2011-111516-5540-99

Lightdd

Lightdd is a Trojan horse that steals information from Android devices.

Table 229. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2011-053114-2342-99

Loaderpush

Loaderpush is an advertisement library that is bundled with certain Android applications.

Table 230. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-040108-0244-99

Locaspy

Locaspy is a Potentially Unwanted Application for Android devices that tracks the location of the compromised device.

Table 231. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-030720-3500-99

Lockdroid.E

Lockdroid.E is a Trojan horse for Android devices that locks the screen and displays a ransom demand on the compromised device.

Table 232. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-103005-2209-99

Lockdroid.F

Lockdroid.F is a Trojan horse for Android devices that locks the screen and displays a ransom demand on the compromised device.

Table 233. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-102215-4346-99

Lockdroid.G

Lockdroid.G is a Trojan horse for Android devices that may display a ransom demand on the compromised device.

Table 234. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-050610-2450-99

Lockdroid.H

Lockdroid.H is a Trojan horse for Android devices that locks the screen and displays a ransom demand on the compromised device.

Table 235. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2016-031621-1349-99

Lockscreen

Lockscreen is a Trojan horse for Android devices that locks the compromised device from use.

Table 236. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2015-032409-0743-99

LogiaAd

LogiaAd is an advertisement library that is bundled with certain Android applications.

Table 237. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-052713-0348-99

Loicdos

Loicdos is an Android application that provides an interface to a website in order to perform a denial of service (DoS) attack against a computer.

Table 238. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2012-022002-2431-99

Loozfon

Loozfon is a Trojan horse for Android devices that steals information from the compromised device.

Table 239. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2012-082005-5451-99

Lotoor

Lotoor is a generic detection for hack tools that exploit vulnerabilities in order to gain root privileges on compromised Android devices.

Table 240. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2012-091922-4449-99

Lovespy

Lovespy is a Trojan horse for Android devices that steals information from the device.

Table 241. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2012-071814-3805-99

Lovetrap

Lovetrap is a Trojan horse that sends SMS messages to premium-rate phone numbers.

Table 242. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2011-072806-2905-99

Luckycat

Luckycat is a Trojan horse for Android devices that opens a back door and steals information on the compromised device.

Table 243. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2012-080617-5343-99

Machinleak

Machinleak is a Trojan horse for Android devices that steals information from the compromised device.

Table 244. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2013-120311-2440-99

Maistealer

Maistealer is a Trojan that steals information from Android devices.

Table 245. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2012-072411-4350-99

Malapp

Malapp is a generic detection for many individual but varied threats on Android devices that share similar characteristics.

Table 246. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2013-073014-3354-99

Malebook

Malebook is a Trojan horse for Android devices that steals information from the compromised device.

Table 247. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2012-071206-3403-99

Malhome

Malhome is a Trojan horse for Android devices that steals information from the compromised device.

Table 248. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2012-071118-0441-99

Malminer

Malminer is a Trojan horse for Android devices that mines cryptocurrencies on the compromised device.

Table 249. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-032712-3709-99

Mania

Mania is a Trojan horse for Android devices that sends SMS messages to a premium-rate phone number.

Table 250. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2012-070623-1520-99

Maxit

Maxit is a Trojan horse for Android devices that opens a back door on the compromised device. It also steals certain information and uploads it to a remote location.

Table 251. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2012-120411-2511-99

MdotM

MdotM is an advertisement library that is bundled with certain Android applications.

Table 252. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-052712-5824-99

Medialets

Medialets is an advertisement library that is bundled with certain Android applications.

Table 253. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-052712-5222-99

Meshidden

Meshidden is a spyware application for Android devices that allows the device it is installed on to be monitored.

Table 254. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-031913-5257-99

Mesploit

Mesploit is a tool for Android devices used to create applications that exploit the Android Fake ID vulnerability.

Table 255. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2015-032014-2847-99

Mesprank

Mesprank is a Trojan horse for Android devices that opens a back door on the compromised device.

Table 256. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-030717-1933-99

Meswatcherbox

Meswatcherbox is a spyware application for Android devices that forwards SMS messages without the user knowing.

Table 257. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2011-111612-2736-99

Miji

Miji is an advertisement library that is bundled with certain Android applications.

Table 258. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-032815-4720-99

Milipnot

Milipnot is a Trojan horse for Android devices that steals information from the compromised device.

Table 259. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-070414-0941-99

MillennialMedia

MillennialMedia is an advertisement library that is bundled with certain Android applications.

Table 260. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-052712-4602-99

Mitcad

Mitcad is an advertisement library that is bundled with certain Android applications.

Table 261. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-040212-0528-99

MobClix

MobClix is an advertisement library that is bundled with certain Android applications.

Table 262. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-052712-4011-99

MobFox

MobFox is an advertisement library that is bundled with certain Android applications.

Table 263. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-052712-3050-99

Mobidisplay

Mobidisplay is an advertisement library that is bundled with certain Android applications.

Table 264. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-040312-0435-99

Mobigapp

Mobigapp is a Trojan horse for Android devices that downloads applications disguised as system updates.

Table 265. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2012-062520-5802-99

MobileBackup

MobileBackup is a spyware application for Android devices that monitors the affected device.

Table 266. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-031020-0040-99

Mobilespy

Mobilespy is a Trojan horse that steals information from Android devices.

Table 267. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2011-071512-0653-99

Mobiletx

Mobiletx is a Trojan horse for Android devices that steals information from the compromised device. It may also send SMS messages to a premium-rate number.

Table 268. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2012-052807-4439-99

Mobinaspy

Mobinaspy is a spyware application for Android devices that can track the device’s location.

Table 269. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2011-111516-0511-99

Mobus

Mobus is an advertisement library that is bundled with certain Android applications.

Table 270. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-040416-2006-99

MobWin

MobWin is an advertisement library that is bundled with certain Android applications.

Table 271. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-040416-1522-99

Mocore

Mocore is an advertisement library that is bundled with certain Android applications.

Table 272. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2015-092112-4603-99

Moghava

Moghava is a Trojan horse for Android devices that modifies images that are stored on the device.

Table 273. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2012-022712-2822-99

Momark

Momark is an advertisement library that is bundled with certain Android applications.

Table 274. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-040113-5529-99

Monitorello

Monitorello is a spyware application for Android devices that allows the device it is installed on to be monitored.

Table 275. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-031914-4737-99

Moolah

Moolah is an advertisement library that is bundled with certain Android applications.

Table 276. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-040416-1007-99

MoPub

MoPub is an advertisement library that is bundled with certain Android applications.

Table 277. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-052712-2456-99

Morepaks

Morepaks is a Trojan horse for Android devices that downloads remote files and may display advertisements on the compromised device.

Table 278. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2012-071204-1130-99

Nandrobox

Nandrobox is a Trojan horse for Android devices that steals information from the compromised device. It also deletes certain SMS messages from the device.

Table 279. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2012-070212-2132-99

Netisend

Netisend is a Trojan horse that steals information from Android devices.

Table 280. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2011-080207-1139-99

Nickispy

Nickispy is a Trojan horse that steals information from Android devices.

Table 281. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2011-072714-3613-99

Notcompatible

Notcompatible is a Trojan horse for Android devices that acts as a proxy.

Table 282. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2012-050307-2712-99

Nuhaz

Nuhaz is a Trojan horse for Android devices that may intercept text messages on the compromised device.

Table 283. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-031814-3416-99

Nyearleaker

Nyearleaker is a Trojan horse program for Android devices that steals information.

Table 284. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2012-010514-0844-99

Obad

Obad is a Trojan horse for Android devices that opens a back door, steals information, and downloads files. It also sends SMS messages to premium-rate numbers and spreads malware to Bluetooth-enabled devices.

Table 285. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2013-060411-4146-99

Oneclickfraud

Oneclickfraud is a Trojan horse for Android devices that attempts to coerce a user into paying for a pornographic service.

Table 286. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2012-011205-4412-99

Opfake

Opfake is a detection for Trojan horses on the Android platform that send SMS texts to premium-rate numbers.

Table 287. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2012-012709-2732-99

Opfake.B

Opfake.B is a Trojan horse for the Android platform that may receive commands from a remote attacker to perform various functions.

Table 288. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2012-022406-1309-99

Ozotshielder

Ozotshielder is a Trojan horse that steals information from Android devices.

Table 289. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2011-091505-3230-99

Pafloat

Pafloat is an advertisement library that is bundled with certain Android applications.

Table 290. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-040215-2015-99

PandaAds

PandaAds is an advertisement library that is bundled with certain Android applications.

Table 291. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-040312-1959-99

Pandbot

Pandbot is a Trojan horse for Android devices that may download more files onto the device.

Table 292. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2012-071215-1454-99

Pdaspy

Pdaspy is a spyware application for Android devices that periodically gathers information from the device and uploads it to a predetermined location.

Table 293. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2011-111612-0749-99

Penetho

Penetho is a hacktool for Android devices that can be used to crack the WiFi password of the router that the device is using.

Table 294. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2012-100110-3614-99

Perkel

Perkel is a Trojan horse for Android devices that may steal information from the compromised device.

Table 295. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2013-082811-4213-99

Phimdropper

Phimdropper is a Trojan horse for Android devices that sends and intercepts incoming SMS messages.

Table 296. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-021002-2943-99

Phospy

Phospy is a Trojan horse for Android devices that steals confidential information from the compromised device.

Table 297. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2013-060706-4803-99

Piddialer

Piddialer is a Trojan horse for Android devices that dials premium-rate numbers from the compromised device.

Table 298. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-111020-2247-99

Pikspam

Pikspam is a Trojan horse for Android devices that sends spam SMS messages from the compromised device.

Table 299. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2012-121815-0336-99

Pincer

Pincer is a Trojan horse for Android devices that steals confidential information and opens a back door on the compromised device.

Table 300. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2013-052307-3530-99

Pirator

Pirator is a Trojan horse on the Android platform that downloads files and steals potentially confidential information from the compromised device.

Table 301. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2012-021609-5740-99

Pjapps

Pjapps is a Trojan horse that has been embedded on third party applications and opens a back door on the compromised device. It retrieves commands from a remote command and control server.

Table 302. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2011-022303-3344-99

Pjapps.B

Pjapps.B is a Trojan horse for Android devices that opens a back door on the compromised device.

Table 303. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-032014-1624-99

Pletora

Pletora is a is a Trojan horse for Android devices that may lock the compromised device. It then asks the user to pay in order to unlock the device.

Table 304. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-061217-4345-99

Poisoncake

Poisoncake is a Trojan horse for Android devices that opens a back door on the compromised device. It may also download potentially malicious files and steal information.

Table 305. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2015-010610-0726-99

Pontiflex

Pontiflex is an advertisement library that is bundled with certain Android applications.

Table 306. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-052618-0946-99

Positmob

Positmob is a Trojan horse program for Android devices that sends SMS messages to premium rate phone numbers.

Table 307. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2011-111409-1556-99

Premiumtext

Premiumtext is a detection for Trojan horses on the Android platform that send SMS texts to premium-rate numbers. These Trojans will often be repackaged versions of genuine Android software packages, often distributed outside the Android Marketplace.

Table 308. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2011-080213-5308-99

Pris

Pris is a Trojan horse for Android devices that silently downloads a malicious application and attempts to open a back door on the compromised device.

Table 309. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2012-061820-5638-99

Qdplugin

Qdplugin is a Trojan horse for Android devices that opens a back door and steals information from the compromised device.

Table 310. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2012-102510-3330-99

Qicsomos

Qicsomos is a Trojan horse for Android devices that sends SMS messages to a premium-rate phone number.

Table 311. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2012-011007-2223-99

Qitmo

Qitmo is a Trojan horse for Android devices that steals information from the compromised device.

Table 312. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-030716-4923-99

Rabbhome

Rabbhome is a Trojan horse for Android devices that steals information from the compromised device.

Table 313. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2012-053007-3750-99

Repane

Repane is a Trojan horse for Android devices that steals information and sends SMS messages from the compromised device.

Table 314. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2013-090411-5052-99

Reputation.1

Reputation.1 is a detection for Android files based on analysis performed by Norton Mobile Insight.

Table 315. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-022612-2619-99

Reputation.2

Reputation.2 is a detection for Android files based on analysis performed by Norton Mobile Insight.

Table 316. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-022613-2629-99

Reputation.3

Reputation.3 is a detection for Android files based on analysis performed by Norton Mobile Insight.

Table 317. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-022613-3126-99

RevMob

RevMob is an advertisement library that is bundled with certain Android applications.

Table 318. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-040308-0502-99

Roidsec

Roidsec is a Trojan horse for Android devices that steals confidential information.

Table 319. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2013-052022-1227-99

Rootcager

Rootcager is a Trojan horse that steals information from Android devices.

Table 320. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2011-030212-1438-99

Rootnik

Rootnik is a Trojan horse for Android devices that steals information and downloads additional apps.

Table 321. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2016-062710-0328-99

Rufraud

Rufraud is a Trojan horse for Android devices that sends SMS messages to premium-rate phone numbers.

Table 322. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2011-121306-2304-99

Rusms

Rusms is a Trojan horse for Android devices that sends SMS messages and steals information from the compromised device.

Table 323. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-061711-5009-99

Samsapo

Samsapo is a worm for Android devices that spreads by sending SMS messages to all contacts stored on the compromised device. It also opens a back door and downloads files.

Table 324. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-050111-1908-99

Sandorat

Sandorat is a Trojan horse for Android devices that opens a back door on the compromised device. It also steals information.

Table 325. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-110720-2146-99

Sberick

Sberick is a Trojan horse for Android devices that steals information from the compromised device.

Table 326. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2013-071014-2146-99

Scartibro

Scartibro is a Trojan horse for Android devices that locks the compromised device and asks the user to pay in order to unlock it.

Table 327. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-080718-2038-99

Scipiex

Scipiex is a Trojan horse for Android devices that steals information from the compromised device.

Table 328. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2013-100814-4702-99

Selfmite

Selfmite is a worm for Android devices that spreads through SMS messages.

Table 329. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-070111-5857-99

Selfmite.B

Selfmite.B is a worm for Android devices that displays ads on the compromised device. It spreads through SMS messages.

Table 330. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-101013-4717-99

SellARing

SellARing is an advertisement library that is bundled with certain Android applications.

Table 331. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-040407-3157-99

SendDroid

SendDroid is an advertisement library that is bundled with certain Android applications.

Table 332. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-040311-2111-99

Simhosy

Simhosy is a Trojan horse for Android devices that steals information from the compromised device.

Table 333. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2013-061013-3955-99

Simplocker

Simplocker is a Trojan horse for Android devices that may encrypt files on the compromised device. It then asks the user to pay in order to decrypt these files.

Table 334. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-060610-5533-99

Simplocker.B

Simplocker.B is a Trojan horse for Android devices that may encrypt files on the compromised device. It then asks the user to pay in order to decrypt these files.

Table 335. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-072317-1950-99

Skullkey

Skullkey is a Trojan horse for Android devices that gives the attacker remote control of the compromised device to perform malicious activity.

Table 336. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2013-072322-5422-99

Smaato

Smaato is an advertisement library that is bundled with certain Android applications.

Table 337. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-052622-1755-99

Smbcheck

Smbcheck is a hacktool for Android devices that can trigger a Server Message Block version 2 (SMBv2) vulnerability and may cause the target computer to crash.

Table 338. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-032613-5634-99

Smsblocker

Smsblocker is a generic detection for threats on Android devices that block the transmission of SMS messages.

Table 339. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2012-081607-4001-99

Smsbomber

Smsbomber is a program that can be used to send messages to contacts on the device.

Table 340. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2012-112611-5837-99

Smslink is a Trojan horse for Android devices that may send malicious SMS messages from the compromised device. It may also display advertisements.

Table 341. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-112600-3035-99

Smspacem

Smspacem is a Trojan horse that may send SMS messages from Android devices.

Table 342. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2011-052310-1322-99

SMSReplicator

SMSReplicator is a spying utility that will secretly transmit incoming SMS messages to another phone of the installer’s choice.

Table 343. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2010-110214-1252-99

Smssniffer

Smssniffer is a Trojan horse that intercepts SMS messages on Android devices.

Table 344. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2011-071108-3626-99

Smsstealer

Smsstealer is a Trojan horse for Android devices that steals information from the compromised device.

Table 345. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-121514-0214-99

Smstibook

Smstibook is a Trojan horse that attempts to send premium-rate SMS messages to predetermined numbers.

Table 346. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2011-051207-4833-99

Smszombie

Smszombie is a Trojan horse for Android devices that steals information from the compromised device.

Table 347. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2012-082011-0922-99

Snadapps

Snadapps is a Trojan horse that steals information from Android devices.

Table 348. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2011-071807-3111-99

Sockbot

Sockbot is a Trojan horse for Android devices that creates a SOCKS proxy on the compromised device.

Table 349. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2017-101314-1353-99

Sockrat

Sockrat is a Trojan horse for Android devices that opens a back door and steals information from the compromised device.

Table 350. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2015-110509-4646-99

Sofacy

Sofacy is a Trojan horse for Android devices that steals information from the compromised device.

Table 351. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2017-010508-5201-99

Sosceo

Sosceo is an advertisement library that is bundled with certain Android applications.

Table 352. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-040408-0609-99

Spitmo

Spitmo is a Trojan horse that steals information from Android devices.

Table 353. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2011-091407-1435-99

Spitmo.B

Spitmo.B is a Trojan horse for Android devices that steals information from the compromised device.

Table 354. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-030715-0445-99

Spyagent

Spyagent is a spyware application for Android devices that logs certain information and sends SMS messages to a predetermined phone number.

Table 355. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2012-090710-1836-99

Spybubble

Spybubble is a Spyware application for Android devices that logs the device’s activity and sends it to a predetermined website.

Table 356. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2011-121917-0335-99

Spydafon

Spydafon is a Potentially Unwanted Application for Android devices that monitors the affected device.

Table 357. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-030722-4740-99

Spymple

Spymple is a spyware application for Android devices that allows the device it is installed on to be monitored.

Table 358. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-031914-5403-99

Spyoo

Spyoo is a spyware program for Android devices that records and sends certain information to a remote location.

Table 359. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2012-081709-0457-99

Spytekcell

Spytekcell is a spyware program for Android devices that monitors and sends certain information to a remote location.

Table 360. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2013-121021-0730-99

Spytrack

Spytrack is a spyware program for Android devices that periodically sends certain information to a remote location.

Table 361. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2012-080109-5710-99

Spywaller

Spywaller is a Trojan horse for Android devices that steals information from the compromised device.

Table 362. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2015-121807-0203-99

Stealthgenie

Stealthgenie is a Trojan horse for Android devices that steals information from the compromised device.

Table 363. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-111416-1306-99

Steek

Steek is a potentially unwanted application that is placed on a download website for Android applications and disguised as popular applications.

Table 364. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2012-010911-3142-99

Stels

Stels is a Trojan horse for Android devices that opens a back door and steals information from the compromised device.

Table 365. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2013-032910-0254-99

Stiniter

Stiniter is a Trojan horse for Android devices that sends SMS messages to a premium-rate phone number.

Table 366. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2012-030903-5228-99

Sumzand

Sumzand is a Trojan horse for Android devices that steals information and sends it to a remote location.

Table 367. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2012-080308-2851-99

Sysecsms

Sysecsms is a Trojan horse for Android devices that steals information from the compromised device.

Table 368. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2012-122714-5228-99

Tanci

Tanci is an advertisement library that is bundled with certain Android applications.

Table 369. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-032815-4108-99

Tapjoy

Tapjoy is an advertisement library that is bundled with certain Android applications.

Table 370. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-052619-4702-99

Tapsnake

Tapsnake is a Trojan horse for Android phones that is embedded into a game. It tracks the phone’s location and posts it to a remote web service.

Table 371. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2010-081214-2657-99

Tascudap

Tascudap is a Trojan horse for Android devices that uses the compromised device in denial of service attacks.

Table 372. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2012-121312-4547-99

Teelog

Teelog is a Trojan horse for Android devices that opens a back door and steals information from the compromised device.

Table 373. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2013-040215-2736-99

Temai

Temai is a Trojan horse for Android applications that opens a back door and downloads malicious files onto the compromised device.

Table 374. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2012-091722-4052-99

Tetus

Tetus is a Trojan horse for Android devices that steals information from the compromised device.

Table 375. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2013-012409-4705-99

Tgpush

Tgpush is an advertisement library that is bundled with certain Android applications.

Table 376. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-032816-0259-99

Tigerbot

Tigerbot is a Trojan horse for Android devices that opens a back door on the compromised device.

Table 377. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2012-041010-2221-99

Tonclank

Tonclank is a Trojan horse that steals information and may open a back door on Android devices.

Table 378. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2011-061012-4545-99

Trogle

Trogle is a worm for Android devices that may steal information from the compromised device.

Table 379. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-081213-5553-99

Twikabot

Twikabot is a Trojan horse for Android devices that attempts to steal information.

Table 380. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2012-062614-5813-99

Uapush

Uapush is a Trojan horse for Android devices that steals information from the compromised device. It may also display advertisements and send SMS messages from the compromised device.

Table 381. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2013-040114-2910-99

Umeng

Umeng is an advertisement library that is bundled with certain Android applications.

Table 382. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-040307-5749-99

Updtbot

Updtbot is a Trojan horse for Android devices that may arrive through SMS messages. It may then open a back door on the compromised device.

Table 383. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2012-041611-4136-99

Upush

Upush is an advertisement library that is bundled with certain Android applications.

Table 384. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-040207-0733-99

Uracto

Uracto is a Trojan horse for Android devices that steals personal information and sends spam SMS messages to contacts found on the compromised device.

Table 385. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2013-031805-2722-99

Uranico

Uranico is a Trojan horse for Android devices that steals information from the compromised device.

Table 386. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2012-052803-3835-99

Usbcleaver

Usbcleaver is a Trojan horse for Android devices that steals information from the compromised device.

Table 387. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2013-062010-1818-99

Utchi

Utchi is an advertisement library that is bundled with certain Android applications.

Table 388. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-040107-2536-99

Uten

Uten is a Trojan horse for Android devices that may send, block, and delete SMS messages on a compromised device. It may also download and install additional applications and attempt to gain root privileges.

Table 389. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2013-092316-4752-99

Uupay

Uupay is a Trojan horse for Android devices that steals information from the compromised device. It may also download additional malware.

Table 390. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-061714-1550-99

Uxipp

Uxipp is a Trojan horse that attempts to send premium-rate SMS messages to predetermined numbers.

Table 391. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2011-060910-5804-99

Vdloader

Vdloader is a Trojan horse for Android devices that opens a back door on the compromised device and steals confidential information.

Table 392. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2012-080209-1420-99

VDopia

VDopia is an advertisement library that is bundled with certain Android applications.

Table 393. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-052712-1559-99

Virusshield

Virusshield is a Trojan horse for Android devices that claims to scan apps and protect personal information, but has no real functionality.

Table 394. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-040810-5457-99

VServ

VServ is an advertisement library that is bundled with certain Android applications.

Table 395. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-052619-3117-99

Walkinwat

Walkinwat is a Trojan horse that steals information from the compromised device.

Table 396. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2011-033008-4831-99

Waps

Waps is an advertisement library that is bundled with certain Android applications.

Table 397. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-040406-5437-99

Waren

Waren is an advertisement library that is bundled with certain Android applications.

Table 398. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-032815-5501-99

Windseeker

Windseeker is a Trojan horse for Android devices that steals information from the compromised device.

Table 399. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-101519-0720-99

Wiyun

Wiyun is an advertisement library that is bundled with certain Android applications.

Table 400. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-040207-5646-99

Wooboo

Wooboo is an advertisement library that is bundled with certain Android applications.

Table 401. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-040407-5829-99

Wqmobile

Wqmobile is an advertisement library that is bundled with certain Android applications.

Table 402. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-040407-4926-99

YahooAds

YahooAds is an advertisement library that is bundled with certain Android applications.

Table 403. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-060621-3229-99

Yatoot

Yatoot is a Trojan horse for Android devices that steals information from the compromised device.

Table 404. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2013-031408-4748-99

Yinhan

Yinhan is an advertisement library that is bundled with certain Android applications.

Table 405. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-040107-3350-99

Youmi

Youmi is an advertisement library that is bundled with certain Android applications.

Table 406. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-040407-4318-99

YuMe

YuMe is an advertisement library that is bundled with certain Android applications.

Table 407. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-060621-0322-99

Zeahache

Zeahache is a Trojan horse that elevates privileges on the compromised device.

Table 408. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2011-032309-5042-99

ZertSecurity

ZertSecurity is a Trojan horse for Android devices that steals information and sends it to a remote attacker.

Table 409. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2013-050820-4100-99

ZestAdz

ZestAdz is an advertisement library that is bundled with certain Android applications.

Table 410. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2014-052616-3821-99

Zeusmitmo

Zeusmitmo is a Trojan horse for Android devices that opens a back door and steals information from the compromised device.

Table 411. Table References

Links

https://www.symantec.com/security_response/writeup.jsp?docid=2012-080818-0448-99

SLocker

The SLocker family is one of the oldest mobile lock screen and file-encrypting ransomware and used to impersonate law enforcement agencies to convince victims to pay their ransom.

SLocker is also known as:

  • SMSLocker

Table 412. Table References

Links

http://blog.trendmicro.com/trendlabs-security-intelligence/mobile-ransomware-pocket-sized-badness/

http://blog.trendmicro.com/trendlabs-security-intelligence/slocker-mobile-ransomware-starts-mimicking-wannacry/

Banker

A list of banker malware..

Banker is a cluster galaxy available in JSON format at this location The JSON format can be freely reused in your application or automatically enabled in MISP.
authors

Unknown

Zeus

Zeus is a trojan horse that is primarily delivered via drive-by-downloads, malvertising, exploit kits and malspam campaigns. It uses man-in-the-browser keystroke logging and form grabbing to steal information from victims. Source was leaked in 2011.

Zeus is also known as:

  • Zbot

Table 413. Table References

Links

https://usa.kaspersky.com/resource-center/threats/zeus-virus

Vawtrak

Delivered primarily by exploit kits as well as malspam campaigns utilizing macro based Microsoft Office documents as attachments. Vawtrak/Neverquest is a modularized banking trojan designed to steal credentials through harvesting, keylogging, Man-In-The-Browser, etc.

Vawtrak is also known as:

  • Neverquest

Table 414. Table References

Links

https://www.kaspersky.com/blog/neverquest-trojan-built-to-steal-from-hundreds-of-banks/3247/

https://www.fidelissecurity.com/threatgeek/2016/05/vawtrak-trojan-bank-it-evolving

https://www.proofpoint.com/us/threat-insight/post/In-The-Shadows

https://www.botconf.eu/wp-content/uploads/2016/11/2016-Vawtrak-technical-report.pdf

Dridex

Dridex leverages redirection attacks designed to send victims to malicious replicas of the banking sites they think they're visiting.

Dridex is also known as:

  • Feodo Version D

Table 415. Table References

Links

https://blog.malwarebytes.com/detections/trojan-dridex/

https://feodotracker.abuse.ch/

Gozi

Banking trojan delivered primarily via email (typically malspam) and exploit kits. Gozi 1.0 source leaked in 2010

Gozi is also known as:

  • Ursnif

  • CRM

  • Snifula

  • Papras

Table 416. Table References

Links

https://www.secureworks.com/research/gozi

https://www.gdatasoftware.com/blog/2016/11/29325-analysis-ursnif-spying-on-your-data-since-2007

https://lokalhost.pl/gozi_tree.txt

Goziv2

Banking trojan attributed to Project Blitzkrieg targeting U.S. Financial institutions.

Goziv2 is also known as:

  • Prinimalka

Table 417. Table References

Links

https://krebsonsecurity.com/tag/gozi-prinimalka/

https://securityintelligence.com/project-blitzkrieg-how-to-block-the-planned-prinimalka-gozi-trojan-attack/

https://lokalhost.pl/gozi_tree.txt

Gozi ISFB

Banking trojan based on Gozi source. Features include web injects for the victims’ browsers, screenshoting, video recording, transparent redirections, etc. Source leaked ~ end of 2015.

Table 418. Table References

Links

https://www.govcert.admin.ch/blog/18/gozi-isfb-when-a-bug-really-is-a-feature

https://blog.malwarebytes.com/threat-analysis/2017/04/binary-options-malvertising-campaign-drops-isfb-banking-trojan/

https://info.phishlabs.com/blog/the-unrelenting-evolution-of-vawtrak

https://lokalhost.pl/gozi_tree.txt

Dreambot

Dreambot is a variant of Gozi ISFB that is spread via numerous exploit kits as well as through malspam email attachments and links.

Table 419. Table References

Links

https://blog.malwarebytes.com/threat-analysis/2017/04/binary-options-malvertising-campaign-drops-isfb-banking-trojan/

https://www.proofpoint.com/us/threat-insight/post/ursnif-variant-dreambot-adds-tor-functionality

https://lokalhost.pl/gozi_tree.txt

IAP

Gozi ISFB variant

Table 420. Table References

Links

https://lokalhost.pl/gozi_tree.txt

http://archive.is/I7hi8#selection-217.0-217.6

GozNym

GozNym hybrid takes the best of both the Nymaim and Gozi ISFB. From the Nymaim malware, it leverages the dropper’s stealth and persistence; the Gozi ISFB parts add the banking Trojan’s capabilities to facilitate fraud via infected Internet browsers.

Table 421. Table References

Links

https://securityintelligence.com/meet-goznym-the-banking-malware-offspring-of-gozi-isfb-and-nymaim/

https://lokalhost.pl/gozi_tree.txt

Zloader Zeus

Zloader is a loader that loads different payloads, one of which is a Zeus module. Delivered via exploit kits and malspam emails.

Zloader Zeus is also known as:

  • Zeus Terdot

Table 422. Table References

Links

https://blog.threatstop.com/zloader/terdot-that-man-in-the-middle

https://www.scmagazine.com/terdot-zloaderzbot-combo-abuses-certificate-app-to-pull-off-mitm-browser-attacks/article/634443/

Zeus VM

Zeus variant that utilizes steganography in image files to retrieve configuration file.

Zeus VM is also known as:

  • VM Zeus

Table 423. Table References

Links

https://blog.malwarebytes.com/threat-analysis/2014/02/hiding-in-plain-sight-a-story-about-a-sneaky-banking-trojan/

https://securityintelligence.com/new-zberp-trojan-discovered-zeus-zbot-carberp/

Zeus Sphinx

Sphinx is a modular banking trojan that is a commercial offering sold to cybercriminals via underground fraudster boards.

Table 424. Table References

Links

https://securityintelligence.com/brazil-cant-catch-a-break-after-panda-comes-the-sphinx/

Panda Banker

Zeus like banking trojan that is delivered primarily through malspam emails and exploit kits.

Panda Banker is also known as:

  • Zeus Panda

Table 425. Table References

Links

https://www.proofpoint.com/us/threat-insight/post/panda-banker-new-banking-trojan-hits-the-market

https://cyberwtf.files.wordpress.com/2017/07/panda-whitepaper.pdf

Zeus KINS

Zeus KINS is a modified version of ZeuS 2.0.8.9. It contains an encrypted version of it’s config in the registry.

Zeus KINS is also known as:

  • Kasper Internet Non-Security

  • Maple

Table 426. Table References

Links

https://securityintelligence.com/zeus-maple-variant-targets-canadian-online-banking-customers/

https://github.com/nyx0/KINS

Chthonic

Chthonic according to Kaspersky is an evolution of Zeus VM. It uses the same encryptor as Andromeda bot, the same encryption scheme as Zeus AES and Zeus V2 Trojans, and a virtual machine similar to that used in ZeusVM and KINS malware.

Table 427. Table References

Links

https://www.proofpoint.com/us/threat-insight/post/threat-actors-using-legitimate-paypal-accounts-to-distribute-chthonic-banking-trojan

https://securelist.com/chthonic-a-new-modification-of-zeus/68176/

Trickbot

Trickbot is a bot that is delivered via exploit kits and malspam campaigns. The bot is capable of downloading modules, including a banker module. Trickbot also shares roots with the Dyre banking trojan

Trickbot is also known as:

  • Trickster

  • Trickloader

Table 428. Table References

Links

https://blog.malwarebytes.com/threat-analysis/2016/10/trick-bot-dyrezas-successor/

https://blog.malwarebytes.com/threat-analysis/2017/08/trickbot-comes-with-new-tricks-attacking-outlook-and-browsing-data/

http://www.pwc.co.uk/issues/cyber-security-data-privacy/research/trickbots-bag-of-tricks.html

https://www.flashpoint-intel.com/blog/new-version-trickbot-adds-worm-propagation-module/

Dyre

Dyre is a banking trojan distributed via exploit kits and malspam emails primarily. It has a modular architectur and utilizes man-in-the-browser functionality. It also leverages a backconnect server that allows threat actors to connect to a bank website through the victim’s computer.

Dyre is also known as:

  • Dyreza

Table 429. Table References

Links

https://www.secureworks.com/research/dyre-banking-trojan

https://blog.malwarebytes.com/threat-analysis/2015/11/a-technical-look-at-dyreza/

Tinba

Tinba is a very small banking trojan that hooks into browsers and steals login data and sniffs on network traffic. It also uses Man in The Browser (MiTB) and webinjects. Tinba is primarily delivered via exploit kits, malvertising and malspam email campaigns.

Tinba is also known as:

  • Zusy

  • TinyBanker

  • illi

Table 430. Table References

Links

https://securityblog.switch.ch/2015/06/18/so-long-and-thanks-for-all-the-domains/

http://securityintelligence.com/tinba-malware-reloaded-and-attacking-banks-around-the-world/

https://blog.avast.com/2014/09/15/tiny-banker-trojan-targets-customers-of-major-banks-worldwide/

http://my.infotex.com/tiny-banker-trojan/

Geodo

Geodo is a banking trojan delivered primarily through malspam emails. It is capable of sniffing network activity to steal information by hooking certain network API calls.

Geodo is also known as:

  • Feodo Version C

  • Emotet

Table 431. Table References

Links

https://feodotracker.abuse.ch/

http://blog.trendmicro.com/trendlabs-security-intelligence/new-banking-malware-uses-network-sniffing-for-data-theft/

Feodo

Feodo is a banking trojan that utilizes web injects and is also capable of monitoring & manipulating cookies. Version A = Port 8080, Version B = Port 80 It is delivered primarily via exploit kits and malspam emails.

Feodo is also known as:

  • Bugat

  • Cridex

Table 432. Table References

Links

https://securelist.com/dridex-a-history-of-evolution/78531/

https://feodotracker.abuse.ch/

http://stopmalvertising.com/rootkits/analysis-of-cridex.html

Ramnit

Originally not a banking trojan in 2010, Ramnit became a banking trojan after the Zeus source code leak. It is capable of perforrming Man-in-the-Browser attacks. Distributed primarily via exploit kits.

Ramnit is also known as:

  • Nimnul

Table 433. Table References

Links

https://www.cert.pl/en/news/single/ramnit-in-depth-analysis/

Qakbot

Qakbot is a banking trojan that leverages webinjects to steal banking information from victims. It also utilizes DGA for command and control. It is primarily delivered via exploit kits.

Qakbot is also known as:

  • Qbot

  • Pinkslipbot

Table 434. Table References

Links

https://securityintelligence.com/qakbot-banking-trojan-causes-massive-active-directory-lockouts/

https://www.johannesbader.ch/2016/02/the-dga-of-qakbot/

https://www.virusbulletin.com/uploads/pdf/magazine/2016/VB2016-Karve-etal.pdf

Corebot

Corebot is a modular trojan that leverages a banking module that can perform browser hooking, form grabbing, MitM, webinjection to steal financial information from victims. Distributed primarily via malspam emails and exploit kits.

Table 435. Table References

Links

https://securityintelligence.com/an-overnight-sensation-corebot-returns-as-a-full-fledged-financial-malware/

https://www.arbornetworks.com/blog/asert/wp-content/uploads/2016/02/ASERT-Threat-Intelligence-Brief-2016-02-Corebot-1.pdf

https://malwarebreakdown.com/2017/09/11/re-details-malspam-downloads-corebot-banking-trojan/

TinyNuke

TinyNuke is a modular banking trojan that includes a HiddenDesktop/VNC server and reverse SOCKS 4 server. It’s main functionality is to make web injections into specific pages to steal user data. Distributed primarily via malspam emails and exploit kits.

TinyNuke is also known as:

  • NukeBot

  • Nuclear Bot

  • MicroBankingTrojan

  • Xbot

Table 436. Table References

Links

https://securelist.com/the-nukebot-banking-trojan-from-rough-drafts-to-real-threats/78957/

https://www.arbornetworks.com/blog/asert/dismantling-nuclear-bot/

https://securityintelligence.com/the-nukebot-trojan-a-bruised-ego-and-a-surprising-source-code-leak/

http://www.kernelmode.info/forum/viewtopic.php?f=16&t=4596

https://benkowlab.blogspot.ca/2017/08/quick-look-at-another-alina-fork-xbot.html

Retefe

Retefe is a banking trojan that is distributed by what SWITCH CERT calls the Retefe gang or Operation Emmental. It uses geolocation based targeting. It also leverages fake root certificate and changes the DNS server for domain name resolution in order to display fake banking websites to victims. It is spread primarily through malspam emails.

Retefe is also known as:

  • Tsukuba

  • Werdlod

Table 437. Table References

Links

https://www.govcert.admin.ch/blog/33/the-retefe-saga

https://threatpost.com/eternalblue-exploit-used-in-retefe-banking-trojan-campaign/128103/

https://countuponsecurity.com/2016/02/29/retefe-banking-trojan/

https://securityblog.switch.ch/2014/11/05/retefe-with-a-new-twist/

http://securityintelligence.com/tsukuba-banking-trojan-phishing-in-japanese-waters/

ReactorBot

ReactorBot is sometimes mistakenly tagged as Rovnix. ReactorBot is a full fledged modular bot that includes a banking module that has roots with the Carberp banking trojan. Distributed primarily via malspam emails.

Table 438. Table References

Links

http://www.malwaredigger.com/2015/06/rovnix-payload-and-plugin-analysis.html

https://www.symantec.com/connect/blogs/new-carberp-variant-heads-down-under

http://www.malwaredigger.com/2015/05/rovnix-dropper-analysis.html

http://blog.trendmicro.com/trendlabs-security-intelligence/rovnix-infects-systems-with-password-protected-macros/

Matrix Banker

Matrix Banker is named accordingly because of the Matrix reference in it’s C2 panel. Distributed primarily via malspam emails.

Table 439. Table References

Links

https://www.arbornetworks.com/blog/asert/another-banker-enters-matrix/

Zeus Gameover

Zeus Gameover captures banking credentials from infected computers, then use those credentials to initiate or re-direct wire transfers to accounts overseas that are controlled by the criminals. GameOver has a decentralized, peer-to-peer command and control infrastructure rather than centralized points of origin. Distributed primarily via malspam emails and exploit kits.

Table 440. Table References

Links

https://heimdalsecurity.com/blog/zeus-gameover/

https://www.us-cert.gov/ncas/alerts/TA14-150A

SpyEye

SpyEye is a similar to the Zeus botnet banking trojan. It utilizes a web control panel for C2 and can perform form grabbing, autofill credit card modules, ftp grabber, pop3 grabber and HTTP basic access authorization grabber. It also contained a Kill Zeus feature which would remove any Zeus infections if SpyEye was on the system. Distributed primarily via exploit kits and malspam emails.

Table 441. Table References

Links

https://www.ioactive.com/pdfs/ZeusSpyEyeBankingTrojanAnalysis.pdf

https://www.computerworld.com/article/2509482/security0/spyeye-trojan-defeating-online-banking-defenses.html

https://www.symantec.com/connect/blogs/spyeye-bot-versus-zeus-bot

Atmos

Atmos is derived from the Citadel banking trojan. Delivered primarily via exploit kits and malspam emails.

Table 443. Table References

Links

https://heimdalsecurity.com/blog/security-alert-citadel-trojan-resurfaces-atmos-zeus-legacy/

http://www.xylibox.com/2016/02/citadel-0011-atmos.html

Ice IX

Ice IX is a bot created using the source code of ZeuS 2.0.8.9. No major improvements compared to ZeuS 2.0.8.9.

Table 444. Table References

Links

https://securelist.com/ice-ix-not-cool-at-all/29111/ [https://securelist.com/ice-ix-not-cool-at-all/29111/ ]

Zitmo

Zeus in the mobile. Banking trojan developed for mobile devices such as Windows Mobile, Blackberry and Android.

Table 445. Table References

Links

https://securelist.com/zeus-in-the-mobile-for-android-10/29258/

Skynet

Skynet is a Tor-powered trojan with DDoS, Bitcoin mining and Banking capabilities. Spread via USENET as per rapid7.

Table 447. Table References

Links

https://blog.rapid7.com/2012/12/06/skynet-a-tor-powered-botnet-straight-from-reddit/

IcedID

According to X-Force research, the new banking Trojan emerged in the wild in September 2017, when its first test campaigns were launched. Our researchers noted that IcedID has a modular malicious code with modern banking Trojan capabilities comparable to malware such as the Zeus Trojan. At this time, the malware targets banks, payment card providers, mobile services providers, payroll, webmail and e-commerce sites in the U.S. Two major banks in the U.K. are also on the target list the malware fetches.

Table 448. Table References

Links

https://www.bleepingcomputer.com/news/security/new-icedid-banking-trojan-discovered/

https://securityintelligence.com/new-banking-trojan-icedid-discovered-by-ibm-x-force-research/

Cert EU GovSector

Cert EU GovSector.

Cert EU GovSector is a cluster galaxy available in JSON format at https://github.com/MISP/misp-galaxy/blob/master/clusters/cert eu govsector.json[this location] The JSON format can be freely reused in your application or automatically enabled in MISP.
authors

Various

Exploit-Kit

Exploit-Kit is an enumeration of some exploitation kits used by adversaries. The list includes document, browser and router exploit kits.It’s not meant to be totally exhaustive but aim at covering the most seen in the past 5 years.

Exploit-Kit is a cluster galaxy available in JSON format at this location The JSON format can be freely reused in your application or automatically enabled in MISP.
authors

Kafeine - Will Metcalf - KahuSecurity

Astrum

Astrum Exploit Kit is a private Exploit Kit used in massive scale malvertising campaigns. It’s notable by its use of Steganography

Astrum is also known as:

  • Stegano EK

Table 449. Table References

Links

http://malware.dontneedcoffee.com/2014/09/astrum-ek.html

http://www.welivesecurity.com/2016/12/06/readers-popular-websites-targeted-stealthy-stegano-exploit-kit-hiding-pixels-malicious-ads/

Bingo

Bingo EK is the name chosen by the defense for a Fiesta-ish EK first spotted in March 2017 and targetting at that times mostly Russia

Terror EK

Terror EK is built on Hunter, Sundown and RIG EK code

Terror EK is also known as:

  • Blaze EK

  • Neptune EK

Table 450. Table References

Links

https://www.trustwave.com/Resources/SpiderLabs-Blog/Terror-Exploit-Kit—​More-like-Error-Exploit-Kit/

DNSChanger

DNSChanger Exploit Kit is an exploit kit targeting Routers via the browser

DNSChanger is also known as:

  • RouterEK

Table 452. Table References

Links

http://malware.dontneedcoffee.com/2015/05/an-exploit-kit-dedicated-to-csrf.html

https://www.proofpoint.com/us/threat-insight/post/home-routers-under-attack-malvertising-windows-android-devices

Disdain

Disdain EK has been introduced on underground forum on 2017-08-07. The panel is stolen from Sundown, the pattern are Terror alike and the obfuscation reminds Nebula

Table 453. Table References

Links

http://blog.trendmicro.com/trendlabs-security-intelligence/new-disdain-exploit-kit-detected-wild/

Kaixin

Kaixin is an exploit kit mainly seen behind compromised website in Asia

Kaixin is also known as:

  • CK vip

Table 454. Table References

Links

http://www.kahusecurity.com/2013/deobfuscating-the-ck-exploit-kit/

http://www.kahusecurity.com/2012/new-chinese-exploit-pack/

MWI

Microsoft Word Intruder is an exploit kit focused on Word and embedded flash exploits. The author wants to avoid their customer to use it in mass spam campaign, so it’s most often connected to semi-targeted attacks

Table 456. Table References

Links

https://www.fireeye.com/blog/threat-research/2015/04/a_new_word_document.html

https://www.sophos.com/en-us/medialibrary/PDFs/technical%20papers/sophos-microsoft-word-intruder-revealed.pdf

RIG

RIG is an exploit kit that takes its source in Infinity EK itself an evolution of Redkit. It became dominant after the fall of Angler, Nuclear Pack and the end of public access to Neutrino. RIG-v is the name given to RIG 4 when it was only accessible by "vip" customers and when RIG 3 was still in use.

RIG is also known as:

  • RIG 3

  • RIG-v

  • RIG 4

  • Meadgive

Table 457. Table References

Links

http://www.kahusecurity.com/2014/rig-exploit-pack/

https://www.trustwave.com/Resources/SpiderLabs-Blog/RIG-Reloaded---Examining-the-Architecture-of-RIG-Exploit-Kit-3-0/

https://www.trustwave.com/Resources/SpiderLabs-Blog/RIG-Exploit-Kit-%E2%80%93-Diving-Deeper-into-the-Infrastructure/

http://malware.dontneedcoffee.com/2016/10/rig-evolves-neutrino-waves-goodbye.html

Sundown-P

Sundown-P/Sundown-Pirate is a rip of Sundown seen used in a private way (One group using it only) - First spotted at the end of June 2017, branded as CaptainBlack in August 2017

Sundown-P is also known as:

  • Sundown-Pirate

  • CaptainBlack

Table 459. Table References

Links

http://blog.trendmicro.com/trendlabs-security-intelligence/promediads-malvertising-sundown-pirate-exploit-kit/

Bizarro Sundown

Bizarro Sundown appears to be a fork of Sundown with added anti-analysis features

Bizarro Sundown is also known as:

  • Sundown-b

Table 460. Table References

Links

http://blog.trendmicro.com/trendlabs-security-intelligence/new-bizarro-sundown-exploit-kit-spreads-locky/

https://blog.malwarebytes.com/cybercrime/exploits/2016/10/yet-another-sundown-ek-variant/

Hunter

Hunter EK is an evolution of 3Ros EK

Hunter is also known as:

  • 3ROS Exploit Kit

Table 461. Table References

Links

https://www.proofpoint.com/us/threat-insight/post/Hunter-Exploit-Kit-Targets-Brazilian-Banking-Customers

GreenFlash Sundown

GreenFlash Sundown is a variation of Bizarro Sundown without landing

GreenFlash Sundown is also known as:

  • Sundown-GF

Table 462. Table References

Links

http://blog.trendmicro.com/trendlabs-security-intelligence/new-bizarro-sundown-exploit-kit-spreads-locky/

Angler

The Angler Exploit Kit has been the most popular and evolved exploit kit from 2014 to middle of 2016. There was several variation. The historical "indexm" variant was used to spread Lurk. A vip version used notabily to spread Poweliks, the "standard" commercial version, and a declinaison tied to load selling (mostly bankers) that can be associated to EmpirePPC

Angler is also known as:

  • XXX

  • AEK

  • Axpergle

Table 463. Table References

Links

https://blogs.sophos.com/2015/07/21/a-closer-look-at-the-angler-exploit-kit/

http://malware.dontneedcoffee.com/2015/12/xxx-is-angler-ek.html

http://malware.dontneedcoffee.com/2016/06/is-it-end-of-angler.html

BlackHole

The BlackHole Exploit Kit has been the most popular exploit kit from 2011 to 2013. Its activity stopped with Paunch’s arrest (all activity since then is anecdotal and based on an old leak)

BlackHole is also known as:

  • BHEK

Table 465. Table References

Links

https://www.trustwave.com/Resources/SpiderLabs-Blog/Blackhole-Exploit-Kit-v2/

https://nakedsecurity.sophos.com/exploring-the-blackhole-exploit-kit/

Bleeding Life

Bleeding Life is an exploit kit that became open source with its version 2

Bleeding Life is also known as:

  • BL

  • BL2

Table 466. Table References

Links

http://www.kahusecurity.com/2011/flash-used-in-idol-malvertisement/

http://thehackernews.com/2011/10/bleeding-life-2-exploit-pack-released.html

Fiesta

Fiesta Exploit Kit

Fiesta is also known as:

  • NeoSploit

  • Fiexp

Table 468. Table References

Links

http://blog.0x3a.com/post/110052845124/an-in-depth-analysis-of-the-fiesta-exploit-kit-an

http://www.kahusecurity.com/2011/neosploit-is-back/

Empire

The Empire Pack is a variation of RIG operated by a load seller. It’s being fed by many traffic actors

Empire is also known as:

  • RIG-E

Table 469. Table References

Links

http://malware.dontneedcoffee.com/2016/10/rig-evolves-neutrino-waves-goodbye.html

FlashPack

FlashPack EK got multiple fork. The most common variant seen was the standalone Flash version

FlashPack is also known as:

  • FlashEK

  • SafePack

  • CritXPack

  • Vintage Pack

Table 470. Table References

Links

http://malware.dontneedcoffee.com/2012/11/meet-critxpack-previously-vintage-pack.html

http://malware.dontneedcoffee.com/2013/04/meet-safe-pack-v20-again.html

GrandSoft

GrandSoft Exploit Kit was a quite common exploit kit used in 2012/2013

GrandSoft is also known as:

  • StampEK

  • SofosFO

Table 471. Table References

Links

http://malware.dontneedcoffee.com/2013/09/FinallyGrandSoft.html

http://malware.dontneedcoffee.com/2012/10/neosploit-now-showing-bh-ek-20-like.html

https://nakedsecurity.sophos.com/2012/08/24/sophos-sucks-malware/

HanJuan

Hanjuan EK was a one actor fed variation of Angler EK used in evolved malvertising chain targeting USA. It has been using a 0day (CVE-2015-0313) from beginning of December 2014 till beginning of February 2015

Table 472. Table References

Links

http://www.malwaresigs.com/2013/10/14/unknown-ek/

https://blog.malwarebytes.com/threat-analysis/2014/08/shining-some-light-on-the-unknown-exploit-kit/

http://blog.trendmicro.com/trendlabs-security-intelligence/a-closer-look-at-the-exploit-kit-in-cve-2015-0313-attack

https://twitter.com/kafeine/status/562575744501428226

Himan

Himan Exploit Kit

Himan is also known as:

  • High Load

Table 473. Table References

Links

http://malware.dontneedcoffee.com/2013/10/HiMan.html

Infinity

Infinity is an evolution of Redkit

Infinity is also known as:

  • Redkit v2.0

  • Goon

Table 475. Table References

Links

http://blog.talosintel.com/2013/11/im-calling-this-goon-exploit-kit-for-now.html

http://www.kahusecurity.com/2014/the-resurrection-of-redkit/

Nebula

Nebula Exploit Kit has been built on Sundown source and features an internal TDS

Table 477. Table References

Links

http://malware.dontneedcoffee.com/2017/03/nebula-exploit-kit.html

Neutrino

Neutrino Exploit Kit has been one of the major exploit kit from its launch in 2013 till september 2016 when it become private (defense name for this variation is Neutrino-v). This EK vanished from march 2014 till november 2014.

Neutrino is also known as:

  • Job314

  • Neutrino Rebooted

  • Neutrino-v

Table 478. Table References

Links

http://malware.dontneedcoffee.com/2013/03/hello-neutrino-just-one-more-exploit-kit.html

http://malware.dontneedcoffee.com/2014/11/neutrino-come-back.html

Niteris

Niteris was used mainly to target Russian.

Niteris is also known as:

  • CottonCastle

Table 479. Table References

Links

http://malware.dontneedcoffee.com/2014/06/cottoncastle.html

http://malware.dontneedcoffee.com/2015/05/another-look-at-niteris-post.html

Nuclear

The Nuclear Pack appeared in 2009 and has been one of the longer living one. Spartan EK was a landing less variation of Nuclear Pack

Nuclear is also known as:

  • NEK

  • Nuclear Pack

  • Spartan

  • Neclu

Table 480. Table References

Links

http://blog.checkpoint.com/2016/05/17/inside-nuclears-core-unraveling-a-ransomware-as-a-service-infrastructure/

Redkit

Redkit has been a major exploit kit in 2012. One of its specific features was to allow its access against a share of a percentage of the customer’s traffic

Table 483. Table References

Links

https://www.trustwave.com/Resources/SpiderLabs-Blog/A-Wild-Exploit-Kit-Appears----Meet-RedKit/

http://malware.dontneedcoffee.com/2012/05/inside-redkit.html

https://nakedsecurity.sophos.com/2013/05/09/redkit-exploit-kit-part-2/

Sakura

Description Here

Table 484. Table References

Links

http://www.xylibox.com/2012/01/sakura-exploit-pack-10.html

Sundown

Sundown Exploit Kit is mainly built out of stolen code from other exploit kits

Sundown is also known as:

  • Beps

  • Xer

  • Beta

Table 485. Table References

Links

http://malware.dontneedcoffee.com/2015/06/fast-look-at-sundown-ek.html

https://www.virusbulletin.com/virusbulletin/2015/06/beta-exploit-pack-one-more-piece-crimeware-infection-road

Sweet-Orange

Sweet Orange

Sweet-Orange is also known as:

  • SWO

  • Anogre

Table 486. Table References

Links

http://malware.dontneedcoffee.com/2012/12/juice-sweet-orange-2012-12.html

WhiteHole

WhiteHole Exploit Kit appeared in January 2013 in the tail of the CVE-2013-0422

Table 488. Table References

Links

http://malware.dontneedcoffee.com/2013/02/briefly-wave-whitehole-exploit-kit-hello.html

Unknown

Unknown Exploit Kit. This is a place holder for any undocumented Exploit Kit. If you use this tag, we will be more than happy to give the associated EK a deep look.

Table 489. Table References

Links

https://twitter.com/kafeine

https://twitter.com/node5

https://twitter.com/kahusecurity

Microsoft Activity Group actor

Activity groups as described by Microsoft.

Microsoft Activity Group actor is a cluster galaxy available in JSON format at https://github.com/MISP/misp-galaxy/blob/master/clusters/microsoft activity group actor.json[this location] The JSON format can be freely reused in your application or automatically enabled in MISP.
authors

Various

PROMETHIUM

PROMETHIUM is an activity group that has been active as early as 2012. The group primarily uses Truvasys, a first-stage malware that has been in circulation for several years. Truvasys has been involved in several attack campaigns, where it has masqueraded as one of server common computer utilities, including WinUtils, TrueCrypt, WinRAR, or SanDisk. In each of the campaigns, Truvasys malware evolved with additional features—this shows a close relationship between the activity groups behind the campaigns and the developers of the malware.

Table 490. Table References

Links

https://blogs.technet.microsoft.com/mmpc/2016/12/14/twin-zero-day-attacks-promethium-and-neodymium-target-individuals-in-europe/

NEODYMIUM

NEODYMIUM is an activity group that is known to use a backdoor malware detected by Microsoft as Wingbird. This backdoor’s characteristics closely match FinFisher, a government-grade commercial surveillance package. Data about Wingbird activity indicate that it is typically used to attack individual computers instead of networks.

Table 491. Table References

Links

https://blogs.technet.microsoft.com/mmpc/2016/12/14/twin-zero-day-attacks-promethium-and-neodymium-target-individuals-in-europe/

TERBIUM

Microsoft Threat Intelligence identified similarities between this recent attack and previous 2012 attacks against tens of thousands of computers belonging to organizations in the energy sector. Microsoft Threat Intelligence refers to the activity group behind these attacks as TERBIUM, following our internal practice of assigning rogue actors chemical element names.

Table 492. Table References

Links

https://blogs.technet.microsoft.com/mmpc/2016/12/09/windows-10-protection-detection-and-response-against-recent-attacks/

STRONTIUM

STRONTIUM has been active since at least 2007. Whereas most modern untargeted malware is ultimately profit-oriented, STRONTIUM mainly seeks sensitive information. Its primary institutional targets have included government bodies, diplomatic institutions, and military forces and installations in NATO member states and certain Eastern European countries. Additional targets have included journalists, political advisors, and organizations associated with political activism in central Asia. STRONTIUM is an activity group that usually targets government agencies, diplomatic institutions, and military organizations, as well as affiliated private sector organizations such as defense contractors and public policy research institutes. Microsoft has attributed more 0-day exploits to STRONTIUM than any other tracked group in 2016. STRONTIUM frequently uses compromised e-mail accounts from one victim to send malicious e-mails to a second victim and will persistently pursue specific targets for months until they are successful in compromising the victims’ computer.

STRONTIUM is also known as:

  • APT 28

  • APT28

  • Pawn Storm

  • Fancy Bear

  • Sednit

  • TsarTeam

  • TG-4127

  • Group-4127

  • Sofacy

  • Grey-Cloud

Table 493. Table References

Links

https://blogs.technet.microsoft.com/mmpc/2016/11/01/our-commitment-to-our-customers-security/

http://download.microsoft.com/download/4/4/C/44CDEF0E-7924-4787-A56A-16261691ACE3/Microsoft_Security_Intelligence_Report_Volume_19_A_Profile_Of_A_Persistent_Adversary_English.pdf

https://blogs.technet.microsoft.com/mmpc/2015/11/16/microsoft-security-intelligence-report-strontium/

DUBNIUM

DUBNIUM (which shares indicators with what Kaspersky researchers have called DarkHotel) is one of the activity groups that has been very active in recent years, and has many distinctive features.

DUBNIUM is also known as:

  • darkhotel

Table 494. Table References

Links

https://securelist.com/blog/research/71713/darkhotels-attacks-in-2015/

https://blogs.technet.microsoft.com/mmpc/2016/06/09/reverse-engineering-dubnium-2

https://blogs.technet.microsoft.com/mmpc/2016/06/20/reverse-engineering-dubniums-flash-targeting-exploit/

https://blogs.technet.microsoft.com/mmpc/2016/07/14/reverse-engineering-dubnium-stage-2-payload-analysis/

PLATINUM

PLATINUM has been targeting its victims since at least as early as 2009, and may have been active for several years prior. Its activities are distinctly different not only from those typically seen in untargeted attacks, but from many targeted attacks as well. A large share of targeted attacks can be characterized as opportunistic: the activity group changes its target profiles and attack geographies based on geopolitical seasons, and may attack institutions all over the world. Like many such groups, PLATINUM seeks to steal sensitive intellectual property related to government interests, but its range of preferred targets is consistently limited to specific governmental organizations, defense institutes, intelligence agencies, diplomatic institutions, and telecommunication providers in South and Southeast Asia. The group’s persistent use of spear phishing tactics (phishing attempts aimed at specific individuals) and access to previously undiscovered zero-day exploits have made it a highly resilient threat.

Table 495. Table References

Links

https://blogs.technet.microsoft.com/mmpc/2016/04/26/digging-deep-for-platinum/

http://download.microsoft.com/download/2/2/5/225BFE3E-E1DE-4F5B-A77B-71200928D209/Platinum%20feature%20article%20-%20Targeted%20attacks%20in%20South%20and%20Southeast%20Asia%20April%202016.pdf

BARIUM

Microsoft Threat Intelligence associates Winnti with multiple activity groups—collections of malware, supporting infrastructure, online personas, victimology, and other attack artifacts that the Microsoft intelligent security graph uses to categorize and attribute threat activity. Microsoft labels activity groups using code names derived from elements in the periodic table. In the case of this malware, the activity groups strongly associated with Winnti are BARIUM and LEAD. But even though they share the use of Winnti, the BARIUM and LEAD activity groups are involved in very different intrusion scenarios. BARIUM begins its attacks by cultivating relationships with potential victims—particularly those working in Business Development or Human Resources—on various social media platforms. Once BARIUM has established rapport, they spear-phish the victim using a variety of unsophisticated malware installation vectors, including malicious shortcut (.lnk) files with hidden payloads, compiled HTML help (.chm) files, or Microsoft Office documents containing macros or exploits. Initial intrusion stages feature the Win32/Barlaiy implant—notable for its use of social network profiles, collaborative document editing sites, and blogs for C&C. Later stages of the intrusions rely upon Winnti for persistent access. The majority of victims recorded to date have been in electronic gaming, multimedia, and Internet content industries, although occasional intrusions against technology companies have occurred.

Table 496. Table References

Links

https://blogs.technet.microsoft.com/mmpc/2017/01/25/detecting-threat-actors-in-recent-german-industrial-attacks-with-windows-defender-atp/

LEAD

In contrast, LEAD has established a far greater reputation for industrial espionage. In the past few years, LEAD’s victims have included: Multinational, multi-industry companies involved in the manufacture of textiles, chemicals, and electronics Pharmaceutical companies A company in the chemical industry University faculty specializing in aeronautical engineering and research A company involved in the design and manufacture of motor vehicles A cybersecurity company focusing on protecting industrial control systems During these intrusions, LEAD’s objective was to steal sensitive data, including research materials, process documents, and project plans. LEAD also steals code-signing certificates to sign its malware in subsequent attacks. In most cases, LEAD’s attacks do not feature any advanced exploit techniques. The group also does not make special effort to cultivate victims prior to an attack. Instead, the group often simply emails a Winnti installer to potential victims, relying on basic social engineering tactics to convince recipients to run the attached malware. In some other cases, LEAD gains access to a target by brute-forcing remote access login credentials, performing SQL injection, or exploiting unpatched web servers, and then they copy the Winnti installer directly to compromised machines.

Table 497. Table References

Links

https://blogs.technet.microsoft.com/mmpc/2017/01/25/detecting-threat-actors-in-recent-german-industrial-attacks-with-windows-defender-atp/

ZIRCONIUM

In addition to strengthening generic detection of EoP exploits, Microsoft security researchers are actively gathering threat intelligence and indicators attributable to ZIRCONIUM, the activity group using the CVE-2017-0005 exploit.

Table 498. Table References

Links

https://blogs.technet.microsoft.com/mmpc/2017/03/27/detecting-and-mitigating-elevation-of-privilege-exploit-for-cve-2017-0005/

Attack Pattern

ATT&CK tactic.

Attack Pattern is a cluster galaxy available in JSON format at https://github.com/MISP/misp-galaxy/blob/master/clusters/attack pattern.json[this location] The JSON format can be freely reused in your application or automatically enabled in MISP.
authors

MITRE

Exfiltration Over Alternative Protocol

Data exfiltration is performed with a different protocol from the main command and control protocol or channel. The data is likely to be sent to an alternate network location from the main command and control server. Alternate protocols include FTP, SMTP, HTTP/S, DNS, or some other network protocol. Different channels could include Internet Web services such as cloud storage.

Detection: Analyze network data for uncommon data flows (e.g., a client sending significantly more data than it receives from a server). Processes utilizing the network that do not normally have network communication or have never been seen before are suspicious. Analyze packet contents to detect communications that do not follow the expected protocol behavior for the port that is being used.[[Citation: University of Birmingham C2]]

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Linux, Windows 10, MacOS, OS X

Data Sources: User interface, Process monitoring, Process use of network, Packet capture, Netflow/Enclave netflow, Network protocol analysis

Table 499. Table References

Links

https://attack.mitre.org/wiki/Technique/T1048

https://arxiv.org/ftp/arxiv/papers/1408/1408.1136.pdf

Standard Application Layer Protocol

Adversaries may communicate using a common, standardized application layer protocol such as HTTP, HTTPS, SMTP, or DNS to avoid detection by blending in with existing traffic. Commands to the remote system, and often the results of those commands, will be embedded within the protocol traffic between the client and server.

For connections that occur internally within an enclave (such as those between a proxy or pivot node and other nodes), commonly used protocols are RPC, SSH, or RDP.

Detection: Analyze network data for uncommon data flows (e.g., a client sending significantly more data than it receives from a server). Processes utilizing the network that do not normally have network communication or have never been seen before are suspicious. Analyze packet contents to detect application layer protocols that do not follow the expected protocol for the port that is being used.[[Citation: University of Birmingham C2]]

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Linux, Windows 10, MacOS, OS X

Data Sources: Packet capture, Netflow/Enclave netflow, Process use of network, Malware reverse engineering, Process monitoring

Table 500. Table References

Links

https://attack.mitre.org/wiki/Technique/T1071

https://arxiv.org/ftp/arxiv/papers/1408/1408.1136.pdf

Launch Agent

Per Apple’s developer documentation, when a user logs in, a per-user launchd process is started which loads the parameters for each launch-on-demand user agent from the property list (plist) files found in <code>/System/Library/LaunchAgents</code>, <code>/Library/LaunchAgents</code>, and <code>$HOME/Library/LaunchAgents</code>[[Citation: AppleDocs Launch Agent Daemons]][[Citation: OSX Keydnap malware]][[Citation: Antiquated Mac Malware]]. These launch agents have property list files which point to the executables that will be launched[[Citation: OSX.Dok Malware]].

Adversaries may install a new launch agent that can be configured to execute at login by using launchd or launchctl to load a plist into the appropriate directories [[Citation: Sofacy Komplex Trojan]] [[Citation: Methods of Mac Malware Persistence]]. The agent name may be disguised by using a name from a related operating system or benign software. Launch Agents are created with user level privileges and are executed with the privileges of the user when they log in[[Citation: OSX Malware Detection]][[Citation: OceanLotus for OS X]]. They can be set up to execute when a specific user logs in (in the specific user’s directory structure) or when any user logs in (which requires administrator privileges).

Detection: Monitor Launch Agent creation through additional plist files and utilities such as Objective-See’s KnockKnock application. Launch Agents also require files on disk for persistence which can also be monitored via other file monitoring applications.

Platforms: MacOS, OS X

Data Sources: File monitoring, Process Monitoring

Table 501. Table References

Links

https://attack.mitre.org/wiki/Technique/T1159

https://blog.malwarebytes.com/threat-analysis/2017/04/new-osx-dok-malware-intercepts-web-traffic/

https://blog.malwarebytes.com/threat-analysis/2017/01/new-mac-backdoor-using-antiquated-code/

https://developer.apple.com/library/content/documentation/MacOSX/Conceptual/BPSystemStartup/Chapters/CreatingLaunchdJobs.html

https://www.welivesecurity.com/2016/07/06/new-osxkeydnap-malware-hungry-credentials/

https://www.virusbulletin.com/uploads/pdf/conference/vb2014/VB2014-Wardle.pdf

https://researchcenter.paloaltonetworks.com/2016/09/unit42-sofacys-komplex-os-x-trojan/

https://www.alienvault.com/blogs/labs-research/oceanlotus-for-os-x-an-application-bundle-pretending-to-be-an-adobe-flash-update

https://www.synack.com/wp-content/uploads/2016/03/RSA%20OSX%20Malware.pdf

Communication Through Removable Media

Adversaries can perform command and control between compromised hosts on potentially disconnected networks using removable media to transfer commands from system to system. Both systems would need to be compromised, with the likelihood that an Internet-connected system was compromised first and the second through lateral movement by Replication Through Removable Media. Commands and files would be relayed from the disconnected system to the Internet-connected system to which the adversary has direct access.

Detection: Monitor file access on removable media. Detect processes that execute when removable media is mounted.

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Linux, Windows 10, MacOS, OS X

Data Sources: File monitoring, Data loss prevention

Table 502. Table References

Links

https://attack.mitre.org/wiki/Technique/T1092

Access Token Manipulation

Windows uses access tokens to determine the ownership of a running process. A user can manipulate access tokens to make a running process appear as though it belongs to someone other than the user that started the process. When this occurs, the process also takes on the security context associated with the new token. For example, Microsoft promotes the use of access tokens as a security best practice. Administrators should log in as a standard user but run their tools with administrator privileges using the built-in access token manipulation command <code>runas</code>. [[Citation: Microsoft runas]]

Adversaries may use access tokens to operate under a different user or system security context to perform actions and evade detection. An adversary can use built-in Windows API functions to copy access tokens from existing processes; this is known as token stealing. An adversary must already be in a privileged user context (i.e. administrator) to steal a token. However, adversaries commonly use token stealing to elevate their security context from the administrator level to the SYSTEM level.[[Citation: Pentestlab Token Manipulation]]

Adversaries can also create spoofed access tokens if they know the credentials of a user. Any standard user can use the <code>runas</code> command, and the Windows API functions, to do this; it does not require access to an administrator account.

Lastly, an adversary can use a spoofed token to authenticate to a remote system as the account for that token if the account has appropriate permissions on the remote system.

Metasploit’s Meterpreter payload allows arbitrary token stealing and uses token stealing to escalate privileges. [[Citation: Metasploit access token]] The Cobalt Strike beacon payload allows arbitrary token stealing and can also create tokens. [[Citation: Cobalt Strike Access Token]]

Detection: If an adversary is using a standard command-line shell, analysts can detect token manipulation by auditing command-line activity. Specifically, analysts should look for use of the <code>runas</code> command. Detailed command-line logging is not enabled by default in Windows.[[Citation: Microsoft Command-line Logging]]

If an adversary is using a payload that calls the Windows token APIs directly, analysts can detect token manipulation only through careful analysis of user network activity, examination of running processes, and correlation with other endpoint and network behavior.

There are many Windows API calls a payload can take advantage of to manipulate access tokens (e.g., <code>LogonUser</code>[[Citation: Microsoft LogonUser]], <code>DuplicateTokenEx</code>[[Citation: Microsoft DuplicateTokenEx]], and <code>ImpersonateLoggedOnUser</code>[[Citation: Microsoft ImpersonateLoggedOnUser]]). Please see the referenced Windows API pages for more information.

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Windows 10

Effective Permissions: SYSTEM

Contributors: Tom Ueltschi @c_APT_ure

Table 503. Table References

Links

https://attack.mitre.org/wiki/Technique/T1134

https://technet.microsoft.com/en-us/windows-server-docs/identity/ad-ds/manage/component-updates/command-line-process-auditing

https://blog.cobaltstrike.com/2015/12/16/windows-access-tokens-and-alternate-credentials/

https://msdn.microsoft.com/en-us/library/windows/desktop/aa446617(v=vs.85).aspx

https://www.offensive-security.com/metasploit-unleashed/fun-incognito/

https://technet.microsoft.com/en-us/library/bb490994.aspx

https://pentestlab.blog/2017/04/03/token-manipulation/

https://msdn.microsoft.com/en-us/library/windows/desktop/aa378612(v=vs.85).aspx

https://msdn.microsoft.com/en-us/library/windows/desktop/aa378184(v=vs.85).aspx

Custom Command and Control Protocol

Adversaries may communicate using a custom command and control protocol instead of using existing Standard Application Layer Protocol to encapsulate commands. Implementations could mimic well-known protocols.

Detection: Analyze network data for uncommon data flows (e.g., a client sending significantly more data than it receives from a server). Processes utilizing the network that do not normally have network communication or have never been seen before are suspicious. Analyze packet contents to detect communications that do not follow the expected protocol behavior for the port that is being used.[[Citation: University of Birmingham C2]]

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Linux, Windows 10, MacOS, OS X

Data Sources: Packet capture, Netflow/Enclave netflow, Process use of network, Process monitoring

Table 504. Table References

Links

https://attack.mitre.org/wiki/Technique/T1094

https://arxiv.org/ftp/arxiv/papers/1408/1408.1136.pdf

File System Permissions Weakness

Processes may automatically execute specific binaries as part of their functionality or to perform other actions. If the permissions on the file system directory containing a target binary, or permissions on the binary itself, are improperly set, then the target binary may be overwritten with another binary using user-level permissions and executed by the original process. If the original process and thread are running under a higher permissions level, then the replaced binary will also execute under higher-level permissions, which could include SYSTEM.

Adversaries may use this technique to replace legitimate binaries with malicious ones as a means of executing code at a higher permissions level. If the executing process is set to run at a specific time or during a certain event (e.g., system bootup) then this technique can also be used for persistence.

===Services===

Manipulation of Windows service binaries is one variation of this technique. Adversaries may replace a legitimate service executable with their own executable to gain persistence and/or privilege escalation to the account context the service is set to execute under (local/domain account, SYSTEM, LocalService, or NetworkService). Once the service is started, either directly by the user (if appropriate access is available) or through some other means, such as a system restart if the service starts on bootup, the replaced executable will run instead of the original service executable.

===Executable Installers===

Another variation of this technique can be performed by taking advantage of a weakness that is common in executable, self-extracting installers. During the installation process, it is common for installers to use a subdirectory within the <code>%TEMP%</code> directory to unpack binaries such as DLLs, EXEs, or other payloads. When installers create subdirectories and files they often do not set appropriate permissions to restrict write access, which allows for execution of untrusted code placed in the subdirectories or overwriting of binaries used in the installation process. This behavior is related to and may take advantage of DLL Search Order Hijacking. Some installers may also require elevated privileges that will result in privilege escalation when executing adversary controlled code. This behavior is related to Bypass User Account Control. Several examples of this weakness in existing common installers have been reported to software vendors.[[Citation: Mozilla Firefox Installer DLL Hijack]][[Citation: Seclists Kanthak 7zip Installer]]

Detection: Look for changes to binaries and service executables that may normally occur during software updates. If an executable is written, renamed, and/or moved to match an existing service executable, it could be detected and correlated with other suspicious behavior. Hashing of binaries and service executables could be used to detect replacement against historical data.

Look for abnormal process call trees from typical processes and services and for execution of other commands that could relate to or other adversary techniques.

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Windows 10

Data Sources: File monitoring, Services, Process command-line parameters

Effective Permissions: SYSTEM, User, Administrator

Contributors: Stefan Kanthak

Table 505. Table References

Links

https://attack.mitre.org/wiki/Technique/T1044

https://www.mozilla.org/en-US/security/advisories/mfsa2012-98/

http://seclists.org/fulldisclosure/2015/Dec/34

Process Hollowing

Process hollowing occurs when a process is created in a suspended state and the process’s memory is replaced with the code of a second program so that the second program runs instead of the original program. Windows and process monitoring tools believe the original process is running, whereas the actual program running is different.DLL Injection to evade defenses and detection analysis of malicious process execution by launching adversary-controlled code under the context of a legitimate process.

Detection: Monitoring API calls may generate a significant amount of data and may not be directly useful for defense unless collected under specific circumstances for known bad sequences of calls, since benign use of API functions may be common and difficult to distinguish from malicious behavior.

Analyze process behavior to determine if a process is performing actions it usually does not, such as opening network connections, reading files, or other suspicious actions that could relate to post-compromise behavior.

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Windows 10

Data Sources: Process monitoring, API monitoring

Table 506. Table References

Links

https://attack.mitre.org/wiki/Technique/T1093

http://www.autosectools.com/process-hollowing.pdf

Scripting

Adversaries may use scripts to aid in operations and perform multiple actions that would otherwise be manual. Scripting is useful for speeding up operational tasks and reducing the time required to gain access to critical resources. Some scripting languages may be used to bypass process monitoring mechanisms by directly interacting with the operating system at an API level instead of calling other programs. Common scripting languages for Windows include VBScript and PowerShell but could also be in the form of command-line batch scripts.

Many popular offensive frameworks exist which use forms of scripting for security testers and adversaries alike. Metasploit[[Citation: Metasploit]], Veil[[Citation: Veil]], and PowerSploit[[Citation: Powersploit]] are three examples that are popular among penetration testers for exploit and post-compromise operations and include many features for evading defenses. Some adversaries are known to use PowerShell.[[Citation: Alperovitch 2014]]

Detection: Scripting may be common on admin, developer, or power user systems, depending on job function. If scripting is restricted for normal users, then any attempts to enable scripts running on a system would be considered suspicious. If scripts are not commonly used on a system, but enabled, scripts running out of cycle from patching or other administrator functions are suspicious. Scripts should be captured from the file system when possible to determine their actions and intent.

Scripts are likely to perform actions with various effects on a system that may generate events, depending on the types of monitoring used. Monitor processes and command-line arguments for script execution and subsequent behavior. Actions may be related to network and system information , , or other scriptable post-compromise behaviors and could be used as indicators of detection leading back to the source script.

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Windows 10, Linux, MacOS, OS X

Data Sources: Process monitoring, File monitoring, Process command-line parameters

Table 507. Table References

Links

https://attack.mitre.org/wiki/Technique/T1064

http://www.metasploit.com

http://blog.crowdstrike.com/deep-thought-chinese-targeting-national-security-think-tanks/

https://www.veil-framework.com/framework/

https://github.com/mattifestation/PowerSploit

Data from Removable Media

Sensitive data can be collected from any removable media (optical disk drive, USB memory, etc.) connected to the compromised system prior to cmd may be used to gather information. Some adversaries may also use Automated Collection on removable media.

Detection: Monitor processes and command-line arguments for actions that could be taken to collect files from a system’s connected removable media. Remote access tools with built-in features may interact directly with the Windows API to gather data. Data may also be acquired through Windows system management tools such as Windows Management Instrumentation and PowerShell.

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Windows 10, Linux, MacOS, OS X

Data Sources: File monitoring, Process monitoring, Process command-line parameters

Table 508. Table References

Links

https://attack.mitre.org/wiki/Technique/T1025

Code Signing

Code signing provides a level of authenticity on a binary from the developer and a guarantee that the binary has not been tampered with.[[Citation: Wikipedia Code Signing]] However, adversaries are known to use code signing certificates to masquerade malware and tools as legitimate binaries[[Citation: Janicab]]. The certificates used during an operation may be created, forged, or stolen by the adversary.[[Citation: Securelist Digital Certificates]][[Citation: Symantec Digital Certificates]]

Code signing to verify software on first run can be used on modern Windows and MacOS/OS X systems. It is not used on Linux due to the decentralized nature of the platform.[[Citation: Wikipedia Code Signing]]

Code signing certificates may be used to bypass security policies that require signed code to execute on a system.

Detection: Collect and analyze signing certificate metadata on software that executes within the environment to look for unusual certificate characteristics and outliers.

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Windows 10, MacOS, OS X

Data Sources: Binary file metadata

Table 509. Table References

Links

https://attack.mitre.org/wiki/Technique/T1116

http://www.symantec.com/connect/blogs/how-attackers-steal-private-keys-digital-certificates

https://securelist.com/blog/security-policies/68593/why-you-shouldnt-completely-trust-files-signed-with-digital-certificates/

http://www.thesafemac.com/new-signed-malware-called-janicab/

https://en.wikipedia.org/wiki/Code%20signing

Hidden Window

The configurations for how applications run on macOS and OS X are listed in property list (plist) files. One of the tags in these files can be <code>apple.awt.UIElement</code>, which allows for Java applications to prevent the application’s icon from appearing in the Dock. A common use for this is when applications run in the system tray, but don’t also want to show up in the Dock. However, adversaries can abuse this feature and hide their running window [[Citation: Antiquated Mac Malware]].

Detection: Plist files are ASCII text files with a specific format, so they’re relatively easy to parse. File monitoring can check for the <code>apple.awt.UIElement</code> or any other suspicious plist tag in plist files and flag them.

Platforms: MacOS, OS X

Data Sources: File monitoring

Table 510. Table References

Links

https://attack.mitre.org/wiki/Technique/T1143

https://blog.malwarebytes.com/threat-analysis/2017/01/new-mac-backdoor-using-antiquated-code/

Rootkit

Rootkits are programs that hide the existence of malware by intercepting and modifying operating system API calls that supply system information. Rootkits or rootkit enabling functionality may reside at the user or kernel level in the operating system or lower, to include a Hypervisor, Master Boot Record, or the System Firmware.[[Citation: Wikipedia Rootkit]]

Adversaries may use rootkits to hide the presence of programs, files, network connections, services, drivers, and other system components.

Detection: Some rootkit protections may be built into anti-virus or operating system software. There are dedicated rootkit detection tools that look for specific types of rootkit behavior. Monitor for the existence of unrecognized DLLs, devices, services, and changes to the MBR.[[Citation: Wikipedia Rootkit]]

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Windows 10

Data Sources: BIOS, MBR, System calls

Table 511. Table References

Links

https://attack.mitre.org/wiki/Technique/T1014

https://en.wikipedia.org/wiki/Rootkit

Startup Items

Per Apple’s documentation, startup items execute during the final phase of the boot process and contain shell scripts or other executable files along with configuration information used by the system to determine the execution order for all startup items[[Citation: Startup Items]]. This is technically a deprecated version (superseded by Launch Daemons), and thus the appropriate folder, <code>/Library/StartupItems</code> isn’t guaranteed to exist on the system by default, but does appear to exist by default on macOS Sierra. A startup item is a directory whose executable and configuration property list (plist), <code>StartupParameters.plist</code>, reside in the top-level directory.

An adversary can create the appropriate folders/files in the StartupItems directory to register their own persistence mechanism[[Citation: Methods of Mac Malware Persistence]]. Additionally, since StartupItems run during the bootup phase of macOS, they will run as root. If an adversary is able to modify an existing Startup Item, then they will be able to Privilege Escalate as well.

Detection: The <code>/Library/StartupItems</code> folder can be monitored for changes. Similarly, the programs that are actually executed from this mechanism should be checked against a whitelist. Monitor processes that are executed during the bootup process to check for unusual or unknown applications and behavior.

Platforms: MacOS, OS X

Data Sources: File monitoring, Process Monitoring

Effective Permissions: root

Table 512. Table References

Links

https://attack.mitre.org/wiki/Technique/T1165

https://developer.apple.com/library/content/documentation/MacOSX/Conceptual/BPSystemStartup/Chapters/StartupItems.html

https://www.virusbulletin.com/uploads/pdf/conference/vb2014/VB2014-Wardle.pdf

Command-Line Interface

Command-line interfaces provide a way of interacting with computer systems and is a common feature across many types of operating system platforms.cmd, which can be used to perform a number of tasks including execution of other software. Command-line interfaces can be interacted with locally or remotely via a remote desktop application, reverse shell session, etc. Commands that are executed run with the current permission level of the command-line interface process unless the command includes process invocation that changes permissions context for that execution (e.g. Scheduled Task).

Adversaries may use command-line interfaces to interact with systems and execute other software during the course of an operation.

Detection: Command-line interface activities can be captured through proper logging of process execution with command-line arguments. This information can be useful in gaining additional insight to adversaries' actions through how they use native processes or custom tools.

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Linux, Windows 10, MacOS, OS X

Data Sources: Process monitoring, Process command-line parameters

Table 513. Table References

Links

https://attack.mitre.org/wiki/Technique/T1059

https://en.wikipedia.org/wiki/Command-line%20interface

Exfiltration Over Command and Control Channel

Data exfiltration is performed over the [[Command and Control]] channel. Data is encoded into the normal communications channel using the same protocol as command and control communications.

Detection: Detection for command and control applies. Analyze network data for uncommon data flows (e.g., a client sending significantly more data than it receives from a server). Processes utilizing the network that do not normally have network communication or have never been seen before are suspicious. Analyze packet contents to detect communications that do not follow the expected protocol behavior for the port that is being used.[[Citation: University of Birmingham C2]]

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Linux, Windows 10, MacOS, OS X

Data Sources: User interface, Process monitoring

Table 514. Table References

Links

https://attack.mitre.org/wiki/Technique/T1041

https://arxiv.org/ftp/arxiv/papers/1408/1408.1136.pdf

Multi-Stage Channels

Adversaries may create multiple stages for command and control that are employed under different conditions or for certain functions. Use of multiple stages may obfuscate the command and control channel to make detection more difficult.

Remote access tools will call back to the first-stage command and control server for instructions. The first stage may have automated capabilities to collect basic host information, update tools, and upload additional files. A second remote access tool (RAT) could be uploaded at that point to redirect the host to the second-stage command and control server. The second stage will likely be more fully featured and allow the adversary to interact with the system through a reverse shell and additional RAT features.

The different stages will likely be hosted separately with no overlapping infrastructure. The loader may also have backup first-stage callbacks or Fallback Channels in case the original first-stage communication path is discovered and blocked.

Detection: Host data that can relate unknown or suspicious process activity using a network connection is important to supplement any existing indicators of compromise based on malware command and control signatures and infrastructure. Relating subsequent actions that may result from of the system and network information or [[Lateral Movement]] to the originating process may also yield useful data.

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Linux, Windows 10, MacOS, OS X

Data Sources: Netflow/Enclave netflow, Network device logs, Network protocol analysis, Packet capture, Process use of network

Table 515. Table References

Links

https://attack.mitre.org/wiki/Technique/T1104

Keychain

Keychains are the built-in way for macOS to keep track of users' passwords and credentials for many services and features such as WiFi passwords, websites, secure notes, certificates, and Kerberos. Keychain files are located in <code>~/Library/Keychains/</code>,<code>/Library/Keychains/</code>, and <code>/Network/Library/Keychains/</code>.[[Citation: Wikipedia keychain]] The <code>security</code> command-line utility, which is built into macOS by default, provides a useful way to manage these credentials.

To manage their credentials, users have to use additional credentials to access their keychain. If an adversary knows the credentials for the login keychain, then they can get access to all the other credentials stored in this vault.[[Citation: External to DA, the OS X Way]] By default, the passphrase for the keychain is the user’s logon credentials.

Detection: Unlocking the keychain and using passwords from it is a very common process, so there is likely to be a lot of noise in any detection technique. Monitoring of system calls to the keychain can help determine if there is a suspicious process trying to access it.

Platforms: MacOS, OS X

Data Sources: System calls, Process Monitoring

Table 516. Table References

Links

https://attack.mitre.org/wiki/Technique/T1142

http://www.slideshare.net/StephanBorosh/external-to-da-the-os-x-way

https://en.wikipedia.org/wiki/Keychain%20(software)

Input Capture

Adversaries can use methods of capturing user input for obtaining credentials for Valid Accounts and information Credential Dumping efforts are not effective, and may require an adversary to remain passive on a system for a period of time before an opportunity arises.

Adversaries may also install code on externally facing portals, such as a VPN login page, to capture and transmit credentials of users who attempt to log into the service. This variation on input capture may be conducted post-compromise using legitimate administrative access as a backup measure to maintain network access through External Remote Services and Valid Accounts or as part of the initial compromise by exploitation of the externally facing web service.Valid Accounts in use by adversaries may help to catch the result of user input interception if new techniques are used.

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Windows 10, Linux, MacOS, OS X

Data Sources: Windows Registry, Kernel drivers, Process monitoring, API monitoring

Contributors: John Lambert, Microsoft Threat Intelligence Center

Table 517. Table References

Links

https://attack.mitre.org/wiki/Technique/T1056

http://blog.leetsys.com/2012/01/02/capturing-windows-7-credentials-at-logon-using-custom-credential-provider/

https://www.volexity.com/blog/2015/10/07/virtual-private-keylogging-cisco-web-vpns-leveraged-for-access-and-persistence/

Regsvcs/Regasm

Regsvcs and Regasm are Windows command-line utilities that are used to register .NET Component Object Model (COM) assemblies. Both are digitally signed by Microsoft.[[Citation: MSDN Regsvcs]][[Citation: MSDN Regasm]]

Adversaries can use Regsvcs and Regasm to proxy execution of code through a trusted Windows utility. Both utilities may be used to bypass process whitelisting through use of attributes within the binary to specify code that should be run before registration or unregistration: <code>[ComRegisterFunction]</code> or <code>[ComUnregisterFunction]</code> respectively. The code with the registration and unregistration attributes will be executed even if the process is run under insufficient privileges and fails to execute.[[Citation: SubTee GitHub All The Things Application Whitelisting Bypass]]

Detection: Use process monitoring to monitor the execution and arguments of Regsvcs.exe and Regasm.exe. Compare recent invocations of Regsvcs.exe and Regasm.exe with prior history of known good arguments and executed binaries to determine anomalous and potentially adversarial activity. Command arguments used before and after Regsvcs.exe or Regasm.exe invocation may also be useful in determining the origin and purpose of the binary being executed.

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Windows 10

Data Sources: Process monitoring, Process command-line parameters

Contributors: Casey Smith

Table 518. Table References

Links

https://attack.mitre.org/wiki/Technique/T1121

https://msdn.microsoft.com/en-us/library/04za0hca.aspx

https://msdn.microsoft.com/en-us/library/tzat5yw6.aspx

https://github.com/subTee/AllTheThings

Trusted Developer Utilities

There are many utilities used for software development related tasks that can be used to execute code in various forms to assist in development, debugging, and reverse engineering. These utilities may often be signed with legitimate certificates that allow them to execute on a system and proxy execution of malicious code through a trusted process that effectively bypasses application whitelisting defensive solutions.

===MSBuild===

MSBuild.exe (Microsoft Build Engine) is a software build platform used by Visual Studio. It takes XML formatted project files that define requirements for building various platforms and configurations.[[Citation: MSDN MSBuild]]

Adversaries can use MSBuild to proxy execution of code through a trusted Windows utility. The inline task capability of MSBuild that was introduced in .NET version 4 allows for C# code to be inserted into the XML project file.[[Citation: MSDN MSBuild Inline Tasks]] MSBuild will compile and execute the inline task. MSBuild.exe is a signed Microsoft binary, so when it is used this way it can execute arbitrary code and bypass application whitelisting defenses that are configured to allow MSBuild.exe execution.[[Citation: SubTee GitHub All The Things Application Whitelisting Bypass]]

===DNX===

The .NET Execution Environment (DNX), dnx.exe, is a software development kit packaged with Visual Studio Enterprise. It was retired in favor of .NET Core CLI in 2016.[[Citation: Microsoft Migrating from DNX]] DNX is not present on standard builds of Windows and may only be present on developer workstations using older versions of .NET Core and ASP.NET Core 1.0. The dnx.exe executable is signed by Microsoft.

An adversary can use dnx.exe to proxy execution of arbitrary code to bypass application whitelist policies that do not account for DNX.[[Citation: engima0x3 DNX Bypass]]

===RCSI===

The rcsi.exe utility is a non-interactive command-line interface for C# that is similar to csi.exe. It was provided within an early version of the Roslyn .NET Compiler Platform but has since been deprecated for an integrated solution.[[Citation: Microsoft Roslyn CPT RCSI]] The rcsi.exe binary is signed by Microsoft.[[Citation: engima0x3 RCSI Bypass]]

C# .csx script files can be written and executed with rcsi.exe at the command-line. An adversary can use rcsi.exe to proxy execution of arbitrary code to bypass application whitelisting policies that do not account for execution of rcsi.exe.[[Citation: engima0x3 RCSI Bypass]]

===WinDbg/CDB===

WinDbg is a Microsoft Windows kernel and user-mode debugging utility. The Microsoft Console Debugger (CDB) cdb.exe is also user-mode debugger. Both utilities are included in Windows software development kits and can be used as standalone tools.[[Citation: Microsoft Debugging Tools for Windows]] They are commonly used in software development and reverse engineering and may not be found on typical Windows systems. Both WinDbg.exe and cdb.exe binaries are signed by Microsoft.

An adversary can use WinDbg.exe and cdb.exe to proxy execution of arbitrary code to bypass application whitelist policies that do not account for execution of those utilities.[[Citation: Exploit Monday WinDbg]]

It is likely possible to use other debuggers for similar purposes, such as the kernel-mode debugger kd.exe, which is also signed by Microsoft.

Detection: The presence of these or other utilities that enable proxy execution that are typically used for development, debugging, and reverse engineering on a system that is not used for these purposes may be suspicious.

Use process monitoring to monitor the execution and arguments of MSBuild.exe, dnx.exe, rcsi.exe, WinDbg.exe, and cdb.exe. Compare recent invocations of those binaries with prior history of known good arguments and executed binaries to determine anomalous and potentially adversarial activity. It is likely that these utilities will be used by software developers or for other software development related tasks, so if it exists and is used outside of that context, then the event may be suspicious. Command arguments used before and after invocation of the utilities may also be useful in determining the origin and purpose of the binary being executed.

Platforms: Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Windows 10

Data Sources: Process monitoring

Contributors: Casey Smith

Table 519. Table References

Links

https://attack.mitre.org/wiki/Technique/T1127

https://enigma0x3.net/2016/11/17/bypassing-application-whitelisting-by-using-dnx-exe/

https://msdn.microsoft.com/library/dd722601.aspx

https://blogs.msdn.microsoft.com/visualstudio/2011/10/19/introducing-the-microsoft-roslyn-ctp/

https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/index

https://github.com/subTee/AllTheThings

https://msdn.microsoft.com/library/dd393574.aspx

http://www.exploit-monday.com/2016/08/windbg-cdb-shellcode-runner.html

https://enigma0x3.net/2016/11/21/bypassing-application-whitelisting-by-using-rcsi-exe/

https://docs.microsoft.com/en-us/dotnet/core/migration/from-dnx

System Network Configuration Discovery

Adversaries will likely look for details about the network configuration and settings of systems they access or through information discovery of remote systems. Several operating system administration utilities exist that can be used to gather this information. Examples include Arp, ipconfig/ifconfig, nbtstat, and route.

Detection: System and network discovery techniques normally occur throughout an operation as an adversary learns the environment. Data and events should not be viewed in isolation, but as part of a chain of behavior that could lead to other activities, such as Windows Management Instrumentation and PowerShell.

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Windows 10, Linux, MacOS, OS X

Data Sources: Process monitoring, Process command-line parameters

Table 520. Table References

Links

https://attack.mitre.org/wiki/Technique/T1016

Scheduled Task

Utilities such as at and schtasks, along with the Windows Task Scheduler, can be used to schedule programs or scripts to be executed at a date and time. The account used to create the task must be in the Administrators group on the local system. A task can also be scheduled on a remote system, provided the proper authentication is met to use RPC and file and printer sharing is turned on.Windows Management Instrumentation and PowerShell, so additional logging may need to be configured to gather the appropriate data.

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Windows 10

Data Sources: File monitoring, Process monitoring, Process command-line parameters

Effective Permissions: SYSTEM, Administrator

Table 521. Table References

Links

https://attack.mitre.org/wiki/Technique/T1053

https://technet.microsoft.com/en-us/sysinternals/bb963902

https://technet.microsoft.com/en-us/library/cc785125.aspx

Application Shimming

The Microsoft Windows Application Compatibility Infrastructure/Framework (Application Shim) was created to allow compatibility of programs as Windows updates and changes its code. For example, application shimming feature that allows programs that were created for Windows XP to work with Windows 10. Within the framework, shims are created to act as a buffer between the program (or more specifically, the Import Address Table) and the Windows OS. When a program is executed, the shim cache is referenced to determine if the program requires the use of the shim database (.sdb). If so, the shim database uses API hooking to redirect the code as necessary in order to communicate with the OS. A list of all shims currently installed by the default Windows installer (sdbinst.exe) is kept in:

  • <code>%WINDIR%\AppPatch\sysmain.sdb</code>

  • <code>hklm\software\microsoft\windows nt\currentversion\appcompatflags\installedsdb</code>

Custom databases are stored in:

  • <code>%WINDIR%\AppPatch\custom & %WINDIR%\AppPatch\AppPatch64\Custom</code>

  • <code>hklm\software\microsoft\windows nt\currentversion\appcompatflags\custom</code>

To keep shims secure, Windows designed them to run in user mode so they cannot modify the kernel and you must have administrator privileges to install a shim. However, certain shims can be used to Bypass User Account Control (UAC) (RedirectEXE), inject DLLs into processes (InjectDll), and intercept memory addresses (GetProcAddress). Utilizing these shims, an adversary can perform several malicious acts, such as elevate privileges, install backdoors, disable defenses like Windows Defender, etc.

Detection: There are several public tools available that will detect shims that are currently available[[Citation: Black Hat 2015 App Shim]]:

  • Shim-Process-Scanner - checks memory of every running process for any Shim flags

  • Shim-Detector-Lite - detects installation of custom shim databases

  • Shim-Guard - monitors registry for any shim installations

  • ShimScanner - forensic tool to find active shims in memory

  • ShimCacheMem - Volatility plug-in that pulls shim cache from memory (note: shims are only cached after reboot)

Monitor process execution for sdbinst.exe and command-line arguments for potential indications of application shim abuse.

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Windows 10

Data Sources: Loaded DLLs, System calls, Windows Registry, Process Monitoring, Process command-line parameters

Table 522. Table References

Links

https://attack.mitre.org/wiki/Technique/T1138

https://www.blackhat.com/docs/eu-15/materials/eu-15-Pierce-Defending-Against-Malicious-Application-Compatibility-Shims-wp.pdf

Windows Management Instrumentation

Windows Management Instrumentation (WMI) is a Windows administration feature that provides a uniform environment for local and remote access to Windows system components. It relies on the WMI service for local and remote access and the server message block (SMB)[[Citation: Wikipedia SMB]] and Remote Procedure Call Service (RPCS)[[Citation: TechNet RPC]] for remote access. RPCS operates over port 135.[[Citation: MSDN WMI]]

An adversary can use WMI to interact with local and remote systems and use it as a means to perform many tactic functions, such as gathering information for and remote of files as part of [[Lateral Movement]].[[Citation: FireEye WMI 2015]]

Detection: Monitor network traffic for WMI connections; the use of WMI in environments that do not typically use WMI may be suspect. Perform process monitoring to capture command-line arguments of "wmic" and detect commands that are used to perform remote behavior.[[Citation: FireEye WMI 2015]]

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Windows 10

Data Sources: Authentication logs, Netflow/Enclave netflow, Process monitoring, Process command-line parameters

Table 523. Table References

Links

https://attack.mitre.org/wiki/Technique/T1047

https://msdn.microsoft.com/en-us/library/aa394582.aspx

https://en.wikipedia.org/wiki/Server%20Message%20Block

https://technet.microsoft.com/en-us/library/cc787851.aspx

https://www.fireeye.com/content/dam/fireeye-www/global/en/current-threats/pdfs/wp-windows-management-instrumentation.pdf

NTFS Extended Attributes

Data or executables may be stored in New Technology File System (NTFS) partition metadata instead of directly in files. This may be done to evade some defenses, such as static indicator scanning tools and anti-virus.[[Citation: Journey into IR ZeroAccess NTFS EA]]

The NTFS format has a feature called Extended Attributes (EA), which allows data to be stored as an attribute of a file or folder.[[Citation: Microsoft File Streams]]

Detection: Forensic techniques exist to identify information stored in EA.[[Citation: Journey into IR ZeroAccess NTFS EA]] It may be possible to monitor NTFS for writes or reads to NTFS EA or to regularly scan for the presence of modified information.

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Windows 10

Data Sources: File monitoring, Kernel drivers

Table 524. Table References

Links

https://attack.mitre.org/wiki/Technique/T1096

http://journeyintoir.blogspot.com/2012/12/extracting-zeroaccess-from-ntfs.html

http://msdn.microsoft.com/en-us/library/aa364404

Launch Daemon

Per Apple’s developer documentation, when macOS and OS X boot up, launchd is run to finish system initialization. This process loads the parameters for each launch-on-demand system-level daemon from the property list (plist) files found in <code>/System/Library/LaunchDaemons</code> and <code>/Library/LaunchDaemons</code>[[Citation: AppleDocs Launch Agent Daemons]]. These LaunchDaemons have property list files which point to the executables that will be launched[[Citation: Methods of Mac Malware Persistence]].

Adversaries may install a new launch daemon that can be configured to execute at startup by using launchd or launchctl to load a plist into the appropriate directories[[Citation: OSX Malware Detection]]. The daemon name may be disguised by using a name from a related operating system or benign software [[Citation: WireLurker]]. Launch Daemons may be created with administrator privileges, but are executed under root privileges, so an adversary may also use a service to escalate privileges from administrator to root.

The plist file permissions must be root:wheel, but the script or program that it points to has no such requirement. So, it is possible for poor configurations to allow an adversary to modify a current Launch Daemon’s executable and gain persistence or Privilege Escalation.

Detection: Monitor Launch Daemon creation through additional plist files and utilities such as Objective-See’s Knock Knock application.

Platforms: MacOS, OS X

Data Sources: Process Monitoring, File monitoring

Effective Permissions: root

Table 525. Table References

Links

https://attack.mitre.org/wiki/Technique/T1160

https://developer.apple.com/library/content/documentation/MacOSX/Conceptual/BPSystemStartup/Chapters/CreatingLaunchdJobs.html

https://www.paloaltonetworks.com/content/dam/pan/en%20US/assets/pdf/reports/Unit%2042/unit42-wirelurker.pdf

https://www.virusbulletin.com/uploads/pdf/conference/vb2014/VB2014-Wardle.pdf

https://www.synack.com/wp-content/uploads/2016/03/RSA%20OSX%20Malware.pdf

Process Discovery

Adversaries may attempt to get information about running processes on a system. Information obtained could be used to gain an understanding of common software running on systems within the network.

===Windows===

An example command that would obtain details on processes is "tasklist" using the Tasklist utility.

===Mac and Linux===

In Mac and Linux, this is accomplished with the <code>ps</code> command.

Detection: System and network discovery techniques normally occur throughout an operation as an adversary learns the environment. Data and events should not be viewed in isolation, but as part of a chain of behavior that could lead to other activities, such as Windows Management Instrumentation and PowerShell.

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Linux, Windows 10, MacOS, OS X

Data Sources: Process monitoring, Process command-line parameters

Table 526. Table References

Links

https://attack.mitre.org/wiki/Technique/T1057

System Firmware

The BIOS (Basic Input/Output System) and The Unified Extensible Firmware Interface (UEFI) or Extensible Firmware Interface (EFI) are examples of system firmware that operate as the software interface between the operating system and hardware of a computer.[[Citation: Wikipedia BIOS]][[Citation: Wikipedia UEFI]][[Citation: About UEFI]]

System firmware like BIOS and (U)EFI underly the functionality of a computer and may be modified by an adversary to perform or assist in malicious activity. Capabilities exist to overwrite the system firmware, which may give sophisticated adversaries a means to install malicious firmware updates as a means of persistence on a system that may be difficult to detect.

Detection: System firmware manipulation may be detected.[[Citation: MITRE Trustworthy Firmware Measurement]] Dump and inspect BIOS images on vulnerable systems and compare against known good images.[[Citation: MITRE Copernicus]] Analyze differences to determine if malicious changes have occurred. Log attempts to read/write to BIOS and compare against known patching behavior.

Likewise, EFI modules can be collected and compared against a known-clean list of EFI executable binaries to detect potentially malicious modules. The CHIPSEC framework can be used for analysis to determine if firmware modifications have been performed.[[Citation: McAfee CHIPSEC Blog]][[Citation: Github CHIPSEC]][[Citation: Intel HackingTeam UEFI Rootkit]]

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Windows 10

Data Sources: API monitoring, BIOS, EFI

Contributors: Ryan Becwar

Table 527. Table References

Links

https://attack.mitre.org/wiki/Technique/T1019

https://en.wikipedia.org/wiki/Unified%20Extensible%20Firmware%20Interface

http://www.intelsecurity.com/advanced-threat-research/content/data/HT-UEFI-rootkit.html

http://www.uefi.org/about

http://www.mitre.org/publications/project-stories/going-deep-into-the-bios-with-mitre-firmware-security-research

http://www.mitre.org/capabilities/cybersecurity/overview/cybersecurity-blog/copernicus-question-your-assumptions-about

https://en.wikipedia.org/wiki/BIOS

https://github.com/chipsec/chipsec

https://securingtomorrow.mcafee.com/business/chipsec-support-vault-7-disclosure-scanning/

Registry Run Keys / Start Folder

Adding an entry to the "run keys" in the Registry or startup folder will cause the program referenced to be executed when a user logs in.Masquerading to make the Registry entries look as if they are associated with legitimate programs.

Detection: Monitor Registry for changes to run keys that do not correlate with known software, patch cycles, etc. Monitor the start folder for additions or changes. Tools such as Sysinternals Autoruns may also be used to detect system changes that could be attempts at persistence, including listing the run keys' Registry locations and startup folders.[[Citation: TechNet Autoruns]] Suspicious program execution as startup programs may show up as outlier processes that have not been seen before when compared against historical data.

Changes to these locations typically happen under normal conditions when legitimate software is installed. To increase confidence of malicious activity, data and events should not be viewed in isolation, but as part of a chain of behavior that could lead to other activities, such as network connections made for [[Command and Control]], learning details about the environment through , and [[Lateral Movement]].

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Windows 10

Data Sources: Windows Registry, File monitoring

Table 528. Table References

Links

https://attack.mitre.org/wiki/Technique/T1060

https://technet.microsoft.com/en-us/sysinternals/bb963902

http://msdn.microsoft.com/en-us/library/aa376977

Service Execution

Adversaries may execute a binary, command, or script via a method that interacts with Windows services, such as the Service Control Manager. This can be done by either creating a new service or modifying an existing service. This technique is the execution used in conjunction with New Service and Modify Existing Service during service persistence or privilege escalation.

Detection: Changes to service Registry entries and command-line invocation of tools capable of modifying services that do not correlate with known software, patch cycles, etc., may be suspicious. If a service is used only to execute a binary or script and not to persist, then it will likely be changed back to its original form shortly after the service is restarted so the service is not left broken, as is the case with the common administrator tool PsExec.

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Windows 10

Data Sources: Windows Registry, Process monitoring, Process command-line parameters

Table 529. Table References

Links

https://attack.mitre.org/wiki/Technique/T1035

Uncommonly Used Port

Adversaries may conduct C2 communications over a non-standard port to bypass proxies and firewalls that have been improperly configured.

Detection: Analyze network data for uncommon data flows (e.g., a client sending significantly more data than it receives from a server). Processes utilizing the network that do not normally have network communication or have never been seen before are suspicious. Analyze packet contents to detect communications that do not follow the expected protocol behavior for the port that is being used.[[Citation: University of Birmingham C2]]

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Linux, Windows 10, MacOS, OS X

Data Sources: Netflow/Enclave netflow, Process use of network, Process monitoring

Table 530. Table References

Links

https://attack.mitre.org/wiki/Technique/T1065

https://arxiv.org/ftp/arxiv/papers/1408/1408.1136.pdf

Deobfuscate/Decode Files or Information

Adversaries may use Obfuscated Files or Information to hide artifacts of an intrusion from analysis. They may require separate mechanisms to decode or deobfuscate that information depending on how they intend to use it. Methods for doing that include built-in functionality of malware, Scripting, PowerShell, or by using utilities present on the system.

One such example is use of certutil to decode a remote access tool portable executable file that has been hidden inside a certificate file.certutil.

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Windows 10

Data Sources: File monitoring, Process Monitoring, Process command-line parameters

Contributors: Matthew Demaske, Adaptforward

Table 531. Table References

Links

https://attack.mitre.org/wiki/Technique/T1140

https://blog.malwarebytes.com/cybercrime/social-engineering-cybercrime/2017/03/new-targeted-attack-saudi-arabia-government/

Create Account

Adversaries with a sufficient level of access may create a local system or domain account. Such accounts may be used for persistence that do not require persistent remote access tools to be deployed on the system.

The <code>net user</code> commands can be used to create a local or domain account.

Detection: Collect data on account creation within a network. Event ID 4720 is generated when a user account is created on a Windows system and domain controller.[[Citation: Microsoft User Creation Event]] Perform regular audits of domain and local system accounts to detect suspicious accounts that may have been created by an adversary.

Platforms: Windows 10, Windows Server 2012, Windows 7, Windows 8, Windows Server 2008 R2, Windows Server 2012 R2, Windows 8.1, Windows Server 2003, Windows Server 2008, Windows XP, Windows Server 2003 R2, Windows Vista, Linux, MacOS, OS X

Data Sources: Process Monitoring, Process command-line parameters, Authentication logs, Windows event logs

Table 532. Table References

Links

https://attack.mitre.org/wiki/Technique/T1136

https://docs.microsoft.com/windows/device-security/auditing/event-4720

Data Staged

Collected data is staged in a central location or directory prior to Data Compressed or Data Encrypted.

Interactive command shells may be used, and common functionality within cmd and bash may be used to copy data into a staging location.

Detection: Processes that appear to be reading files from disparate locations and writing them to the same directory or file may be an indication of data being staged, especially if they are suspected of performing encryption or compression on the files.

Monitor processes and command-line arguments for actions that could be taken to collect and combine files. Remote access tools with built-in features may interact directly with the Windows API to gather and copy to a location. Data may also be acquired and staged through Windows system management tools such as Windows Management Instrumentation and PowerShell.

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Windows 10, Linux, MacOS, OS X

Data Sources: File monitoring, Process monitoring, Process command-line parameters

Table 533. Table References

Links

https://attack.mitre.org/wiki/Technique/T1074

Rc.common

During the boot process, macOS and Linux both execute <code>source /etc/rc.common</code>, which is a shell script containing various utility functions. This file also defines routines for processing command-line arguments and for gathering system settings, and is thus recommended to include in the start of Startup Item Scripts[[Citation: Startup Items]]. In macOS and OS X, this is now a deprecated technique in favor of launch agents and launch daemons, but is currently still used.

Adversaries can use the rc.common file as a way to hide code for persistence that will execute on each reboot as the root user[[Citation: Methods of Mac Malware Persistence]].

Detection: The <code>/etc/rc.common</code> file can be monitored to detect changes from the company policy. Monitor process execution resulting from the rc.common script for unusual or unknown applications or behavior.

Platforms: Linux, MacOS, OS X

Data Sources: File monitoring, Process Monitoring

Table 534. Table References

Links

https://attack.mitre.org/wiki/Technique/T1163

https://developer.apple.com/library/content/documentation/MacOSX/Conceptual/BPSystemStartup/Chapters/StartupItems.html

https://www.virusbulletin.com/uploads/pdf/conference/vb2014/VB2014-Wardle.pdf

Securityd Memory

In OS X prior to El Capitan, users with root access can read plaintext keychain passwords of logged-in users because Apple’s keychain implementation allows these credentials to be cached so that users are not repeatedly prompted for passwords.[[Citation: OS X Keychain]][[Citation: External to DA, the OS X Way]] Apple’s securityd utility takes the user’s logon password, encrypts it with PBKDF2, and stores this master key in memory. Apple also uses a set of keys and algorithms to encrypt the user’s password, but once the master key is found, an attacker need only iterate over the other values to unlock the final password.[[Citation: OS X Keychain]]

If an adversary can obtain root access (allowing them to read securityd’s memory), then they can scan through memory to find the correct sequence of keys in relatively few tries to decrypt the user’s logon keychain. This provides the adversary with all the plaintext passwords for users, WiFi, mail, browsers, certificates, secure notes, etc.[[Citation: OS X Keychain]][[Citation: OSX Keydnap malware]]

Platforms: OS X

Data Sources: Process Monitoring

Table 535. Table References

Links

https://attack.mitre.org/wiki/Technique/T1167

https://www.welivesecurity.com/2016/07/06/new-osxkeydnap-malware-hungry-credentials/

http://www.slideshare.net/StephanBorosh/external-to-da-the-os-x-way

http://juusosalonen.com/post/30923743427/breaking-into-the-os-x-keychain

New Service

When operating systems boot up, they can start programs or applications called services that perform background system functions.Masquerading. Services may be created with administrator privileges but are executed under SYSTEM privileges, so an adversary may also use a service to escalate privileges from administrator to SYSTEM. Adversaries may also directly start services through Service Execution.

Detection: Monitor service creation through changes in the Registry and common utilities using command-line invocation. New, benign services may be created during installation of new software. Data and events should not be viewed in isolation, but as part of a chain of behavior that could lead to other activities, such as network connections made for Windows Management Instrumentation and PowerShell, so additional logging may need to be configured to gather the appropriate data.

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Windows 10

Data Sources: Windows Registry, Process monitoring, Process command-line parameters

Effective Permissions: SYSTEM

Table 536. Table References

Links

https://attack.mitre.org/wiki/Technique/T1050

https://technet.microsoft.com/en-us/sysinternals/bb963902

https://technet.microsoft.com/en-us/library/cc772408.aspx

Network Share Connection Removal

Windows shared drive and Windows Admin Shares connections can be removed when no longer needed. Net is an example utility that can be used to remove network share connections with the <code>net use \\system\share /delete</code> command.Windows Admin Shares. SMB traffic between systems may also be captured and decoded to look for related network share session and file transfer activity. Windows authentication logs are also useful in determining when authenticated network shares are established and by which account, and can be used to correlate network share activity to other events to investigate potentially malicious activity.

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Windows 10

Data Sources: Process monitoring, Process command-line parameters, Packet capture, Authentication logs

Table 537. Table References

Links

https://attack.mitre.org/wiki/Technique/T1126

https://technet.microsoft.com/bb490717.aspx

DLL Injection

DLL injection is used to run code in the context of another process by causing the other process to load and execute code. Running code in the context of another process provides adversaries many benefits, such as access to the process’s memory and permissions. It also allows adversaries to mask their actions under a legitimate process. A more sophisticated kind of DLL injection, reflective DLL injection, loads code without calling the normal Windows API calls, potentially bypassing DLL load monitoring. Numerous methods of DLL injection exist on Windows, including modifying the Registry, creating remote threads, Windows hooking APIs, and DLL pre-loading.PowerShell with tools such as PowerSploit,[[Citation: Powersploit]] so additional PowerShell monitoring may be required to cover known implementations of this behavior.

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Windows 10

Data Sources: API monitoring, Windows Registry, File monitoring, Process monitoring

Effective Permissions: User, Administrator, SYSTEM

Table 538. Table References

Links

https://attack.mitre.org/wiki/Technique/T1055

http://www.codeproject.com/Articles/4610/Three-Ways-to-Inject-Your-Code-into-Another-Proces

http://en.wikipedia.org/wiki/DLL%20injection

https://github.com/mattifestation/PowerSploit

Hidden Files and Directories

To prevent normal users from accidentally changing special files on a system, most operating systems have the concept of a ‘hidden’ file. These files don’t show up when a user browses the file system with a GUI or when using normal commands on the command line. Users must explicitly ask to show the hidden files either via a series of Graphical User Interface (GUI) prompts or with command line switches (<code>dir /a</code> for Windows and <code>ls –a</code> for Linux and macOS).

===Windows===

Users can mark specific files as hidden by using the attrib.exe binary. Simply do <code>attrib +h filename</code> to mark a file or folder as hidden. Similarly, the “+s” marks a file as a system file and the “+r” flag marks the file as read only. Like most windows binaries, the attrib.exe binary provides the ability to apply these changes recursively “/S”.

===Linux/Mac===

Users can mark specific files as hidden simply by putting a “.” as the first character in the file or folder name [[Citation: Sofacy Komplex Trojan]][[Citation: Antiquated Mac Malware]]. Files and folder that start with a period, ‘.’, are by default hidden from being viewed in the Finder application and standard command-line utilities like “ls”. Users must specifically change settings to have these files viewable. For command line usages, there is typically a flag to see all files (including hidden ones). To view these files in the Finder Application, the following command must be executed: <code>defaults write com.apple.finder AppleShowAllFiles YES</code>, and then relaunch the Finder Application.

===Mac===

Files on macOS can be marked with the UF_HIDDEN flag which prevents them from being seen in Finder.app, but still allows them to be seen in Terminal.app[[Citation: WireLurker]]. Many applications create these hidden files and folders to store information so that it doesn’t clutter up the user’s workspace. For example, SSH utilities create a .ssh folder that’s hidden and contains the user’s known hosts and keys.

Adversaries can use this to their advantage to hide files and folders anywhere on the system for persistence and evading a typical user or system analysis that does not incorporate investigation of hidden files.

Detection: Monitor the file system and shell commands for files being created with a leading "." and the Windows command-line use of attrib.exe to add the hidden attribute.

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Linux, Windows 10, MacOS, OS X

Data Sources: File monitoring, Process Monitoring, Process command-line parameters

Table 539. Table References

Links

https://attack.mitre.org/wiki/Technique/T1158

https://www.paloaltonetworks.com/content/dam/pan/en%20US/assets/pdf/reports/Unit%2042/unit42-wirelurker.pdf

https://researchcenter.paloaltonetworks.com/2016/09/unit42-sofacys-komplex-os-x-trojan/

https://blog.malwarebytes.com/threat-analysis/2017/01/new-mac-backdoor-using-antiquated-code/

Authentication Package

Windows Authentication Package DLLs are loaded by the Local Security Authority (LSA) process at system start. They provide support for multiple logon processes and multiple security protocols to the operating system.[[Citation: MSDN Authentication Packages]]

Adversaries can use the autostart mechanism provided by LSA Authentication Packages for persistence by placing a reference to a binary in the Windows Registry location <code>HKLM\SYSTEM\CurrentControlSet\Control\Lsa\</code> with the key value of <code>"Authentication Packages"=<target binary></code>. The binary will then be executed by the system when the authentication packages are loaded.

Detection: Monitor the Registry for changes to the LSA Registry keys. Monitor the LSA process for DLL loads. Windows 8.1 and Windows Server 2012 R2 may generate events when unsigned DLLs try to load into the LSA by setting the Registry key <code>HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Image File Execution Options\LSASS.exe</code> with AuditLevel = 8.[[Citation: Graeber 2014]][[Citation: Microsoft Configure LSA]]

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Windows 10

Data Sources: DLL monitoring, Windows Registry, Loaded DLLs

Table 540. Table References

Links

https://attack.mitre.org/wiki/Technique/T1131

https://msdn.microsoft.com/library/windows/desktop/aa374733.aspx

https://technet.microsoft.com/en-us/library/dn408187.aspx

http://docplayer.net/20839173-Analysis-of-malicious-security-support-provider-dlls.html

Multilayer Encryption

An adversary performs C2 communications using multiple layers of encryption, typically (but not exclusively) tunneling a custom encryption scheme within a protocol encryption scheme such as HTTPS or SMTPS.

Detection: If malware uses Standard Cryptographic Protocol, SSL/TLS inspection can be used to detect command and control traffic within some encrypted communication channels.Custom Cryptographic Protocol, if malware uses encryption with symmetric keys, it may be possible to obtain the algorithm and key from samples and use them to decode network traffic to detect malware communications signatures.[[Citation: Fidelis DarkComet]]

In general, analyze network data for uncommon data flows (e.g., a client sending significantly more data than it receives from a server). Processes utilizing the network that do not normally have network communication or have never been seen before are suspicious. Analyze packet contents to detect communications that do not follow the expected protocol behavior for the port that is being used.[[Citation: University of Birmingham C2]]

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Linux, Windows 10, MacOS, OS X

Data Sources: Packet capture, Process use of network, Malware reverse engineering, Process monitoring

Table 541. Table References

Links

https://attack.mitre.org/wiki/Technique/T1079

https://www.fidelissecurity.com/sites/default/files/FTA%201018%20looking%20at%20the%20sky%20for%20a%20dark%20comet.pdf

http://www.sans.org/reading-room/whitepapers/analyst/finding-hidden-threats-decrypting-ssl-34840

https://arxiv.org/ftp/arxiv/papers/1408/1408.1136.pdf

https://insights.sei.cmu.edu/cert/2015/03/the-risks-of-ssl-inspection.html

Component Firmware

Some adversaries may employ sophisticated means to compromise computer components and install malicious firmware that will execute adversary code outside of the operating system and main system firmware or BIOS. This technique may be similar to System Firmware but conducted upon other system components that may not have the same capability or level of integrity checking. Malicious device firmware could provide both a persistent level of access to systems despite potential typical failures to maintain access and hard disk re-images, as well as a way to evade host software-based defenses and integrity checks.

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Windows 10

Table 542. Table References

Links

https://attack.mitre.org/wiki/Technique/T1109

Cron Job

Per Apple’s developer documentation, there are two supported methods for creating periodic background jobs: launchd and cron[[Citation: AppleDocs Scheduling Timed Jobs]].

===Launchd===

Each Launchd job is described by a different configuration property list (plist) file similar to Launch Daemons or Launch Agents, except there is an additional key called <code>StartCalendarInterval</code> with a dictionary of time values [[Citation: AppleDocs Scheduling Timed Jobs]]. This only works on macOS and OS X.

===cron===

System-wide cron jobs are installed by modifying <code>/etc/crontab</code> while per-user cron jobs are installed using crontab with specifically formatted crontab files [[Citation: AppleDocs Scheduling Timed Jobs]]. This works on Mac and Linux systems.

Both methods allow for commands or scripts to be executed at specific, periodic intervals in the background without user interaction. An adversary may use task scheduling to execute programs at system startup or on a scheduled basis for persistence[[Citation: Janicab]][[Citation: Methods of Mac Malware Persistence]][[Citation: Malware Persistence on OS X]], to conduct Execution as part of Lateral Movement, to gain root privileges, or to run a process under the context of a specific account.

Detection: Legitimate scheduled jobs may be created during installation of new software or through administration functions. Tasks scheduled with launchd and cron can be monitored from their respective utilities to list out detailed information about the jobs. Monitor process execution resulting from launchd and cron tasks to look for unusual or unknown applications and behavior.

Platforms: Linux, MacOS

Data Sources: File monitoring, Process Monitoring

Table 543. Table References

Links

https://attack.mitre.org/wiki/Technique/T1168

https://www.rsaconference.com/writable/presentations/file%20upload/ht-r03-malware-persistence-on-os-x-yosemite%20final.pdf

http://www.thesafemac.com/new-signed-malware-called-janicab/

https://www.virusbulletin.com/uploads/pdf/conference/vb2014/VB2014-Wardle.pdf

https://developer.apple.com/library/content/documentation/MacOSX/Conceptual/BPSystemStartup/Chapters/ScheduledJobs.html

Windows Management Instrumentation Event Subscription

Windows Management Instrumentation (WMI) can be used to install event filters, providers, consumers, and bindings that execute code when a defined event occurs. Adversaries may use the capabilities of WMI to subscribe to an event and execute arbitrary code when that event occurs, providing persistence on a system. Adversaries may attempt to evade detection of this technique by compiling WMI scripts.[[Citation: Dell WMI Persistence]] Examples of events that may be subscribed to are the wall clock time or the computer’s uptime.[[Citation: Kazanciyan 2014]] Several threat groups have reportedly used this technique to maintain persistence.[[Citation: Mandiant M-Trends 2015]]

Detection: Monitor WMI event subscription entries, comparing current WMI event subscriptions to known good subscriptions for each host. Tools such as Sysinternals Autoruns may also be used to detect WMI changes that could be attempts at persistence.[[Citation: TechNet Autoruns]]

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Windows 10

Data Sources: WMI Objects

Table 544. Table References

Links

https://attack.mitre.org/wiki/Technique/T1084

https://technet.microsoft.com/en-us/sysinternals/bb963902

https://www2.fireeye.com/rs/fireye/images/rpt-m-trends-2015.pdf

https://www.secureworks.com/blog/wmi-persistence

https://www.defcon.org/images/defcon-22/dc-22-presentations/Kazanciyan-Hastings/DEFCON-22-Ryan-Kazanciyan-Matt-Hastings-Investigating-Powershell-Attacks.pdf

Disabling Security Tools

Adversaries may disable security tools to avoid possible detection of their tools and activities. This can take the form of killing security software or event logging processes, deleting Registry keys so that tools do not start at run time, or other methods to interfere with security scanning or event reporting.

Detection: Monitor processes and command-line arguments to see if security tools are killed or stop running. Monitor Registry edits for modifications to services and startup programs that correspond to security tools. Lack of log or event file reporting may be suspicious.

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Windows 10, Linux, MacOS, OS X

Data Sources: API monitoring, File monitoring, Services, Windows Registry, Process command-line parameters, Anti-virus

Table 545. Table References

Links

https://attack.mitre.org/wiki/Technique/T1089

Peripheral Device Discovery

Adversaries may attempt to gather information about attached peripheral devices and components connected to a computer system. The information may be used to enhance their awareness of the system and network environment or may be used for further actions.

Detection: System and network discovery techniques normally occur throughout an operation as an adversary learns the environment. Data and events should not be viewed in isolation, but as part of a chain of behavior that could lead to other activities based on the information obtained.

Monitor processes and command-line arguments for actions that could be taken to gather system and network information. Remote access tools with built-in features may interact directly with the Windows API to gather information. Information may also be acquired through Windows system management tools such as Windows Management Instrumentation and PowerShell.

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Windows 10

Table 546. Table References

Links

https://attack.mitre.org/wiki/Technique/T1120

Data Compressed

An adversary may compress data (e.g., sensitive documents) that is collected prior to exfiltration in order to make it portable and minimize the amount of data sent over the network. The compression is done separately from the exfiltration channel and is performed using a custom program or algorithm, or a more common compression library or utility such as 7zip, RAR, ZIP, or zlib.

Detection: Compression software and compressed files can be detected in many ways. Common utilities that may be present on the system or brought in by an adversary may be detectable through process monitoring and monitoring for command-line arguments for known compression utilities. This may yield a significant amount of benign events, depending on how systems in the environment are typically used.

If the communications channel is unencrypted, compressed files can be detected in transit during exfiltration with a network intrusion detection or data loss prevention system analyzing file headers.[[Citation: Wikipedia File Header Signatures]]

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Windows 10, Linux, MacOS, OS X

Data Sources: File monitoring, Process monitoring, Process command-line parameters, Binary file metadata

Table 547. Table References

Links

https://attack.mitre.org/wiki/Technique/T1002

https://en.wikipedia.org/wiki/List%20of%20file%20signatures

Account Discovery

Adversaries may attempt to get a listing of local system or domain accounts.

===Windows===

Example commands that can acquire this information are <code>net user</code>, <code>net group <groupname></code>, and <code>net localgroup <groupname></code> using the Net utility or through use of dsquery. If adversaries attempt to identify the primary user, currently logged in user, or set of users that commonly uses a system, System Owner/User Discovery may apply.

===Mac===

On Mac, groups can be enumerated through the <code>groups</code> and <code>id</code> commands. In mac specifically, <code>dscl . list /Groups</code> and <code>dscacheutil -q group</code> can also be used to enumerate groups and users.

===Linux===

On Linux, local users can be enumerated through the use of the <code>/etc/passwd</code> file which is world readable. In mac, this same file is only used in single-user mode in addition to the <code>/etc/master.passwd</code> file.

Also, groups can be enumerated through the <code>groups</code> and <code>id</code> commands. In mac specifically, <code>dscl . list /Groups</code> and <code>dscacheutil -q group</code> can also be used to enumerate groups and users.

Detection: System and network discovery techniques normally occur throughout an operation as an adversary learns the environment. Data and events should not be viewed in isolation, but as part of a chain of behavior that could lead to other activities, such as Windows Management Instrumentation and PowerShell.

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Windows 10, Linux, MacOS, OS X

Data Sources: API monitoring, Process monitoring, Process command-line parameters

Table 548. Table References

Links

https://attack.mitre.org/wiki/Technique/T1087

Pass the Hash

Pass the hash (PtH)[[Citation: Aorato PTH]] is a method of authenticating as a user without having access to the user’s cleartext password. This method bypasses standard authentication steps that require a cleartext password, moving directly into the portion of the authentication that uses the password hash. In this technique, valid password hashes for the account being used are captured using a [[Credential Access]] technique. Captured hashes are used with PtH to authenticate as that user. Once authenticated, PtH may be used to perform actions on local or remote systems.

Windows 7 and higher with KB2871997 require valid domain user credentials or RID 500 administrator hashes.[[Citation: NSA Spotting]]

Detection: Audit all logon and credential use events and review for discrepancies. Unusual remote logins that correlate with other suspicious activity (such as writing and executing binaries) may indicate malicious activity. NTLM LogonType 3 authentications that are not associated to a domain login and are not anonymous logins are suspicious.

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Windows 10

Data Sources: Authentication logs

Table 549. Table References

Links

https://attack.mitre.org/wiki/Technique/T1075

http://www.nsa.gov/ia/%20files/app/spotting%20the%20adversary%20with%20windows%20event%20log%20monitoring.pdf

http://www.aorato.com/labs/pass-the-hash/

Clear Command History

macOS and Linux both keep track of the commands users type in their terminal so that users can easily remember what they’ve done. These logs can be accessed in a few different ways. While logged in, this command history is tracked in a file pointed to by the environment variable <code>HISTFILE</code>. When a user logs off a system, this information is flushed to a file in the user’s home directory called <code>~/.bash_history</code>. The benefit of this is that it allows users to go back to commands they’ve used before in different sessions. Since everything typed on the command-line is saved, passwords passed in on the command line are also saved. Adversaries can abuse this by searching these files for cleartext passwords. Additionally, adversaries can use a variety of methods to prevent their own commands from appear in these logs such as <code>unset HISTFILE</code>, <code>export HISTFILESIZE=0</code>, <code>history -c</code>, <code>rm ~/.bash_history</code>.

Detection: User authentication, especially via remote terminal services like SSH, without new entries in that user’s <code>~/.bash_history</code> is suspicious. Additionally, the modification of the HISTFILE and HISTFILESIZE environment variables or the removal/clearing of the <code>~/.bash_history</code> file are indicators of suspicious activity.

Platforms: Linux, MacOS, OS X

Data Sources: Authentication logs, File monitoring

Table 550. Table References

Links

https://attack.mitre.org/wiki/Technique/T1146

Timestomp

Timestomping is a technique that modifies the timestamps of a file (the modify, access, create, and change times), often to mimic files that are in the same folder. This is done, for example, on files that have been modified or created by the adversary so that they do not appear conspicuous to forensic investigators or file analysis tools. Timestomping may be used along with file name Masquerading to hide malware and tools.[[Citation: WindowsIR Anti-Forensic Techniques]]

Detection: Forensic techniques exist to detect aspects of files that have had their timestamps modified.[[Citation: WindowsIR Anti-Forensic Techniques]] It may be possible to detect timestomping using file modification monitoring that collects information on file handle opens and can compare timestamp values.

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Linux, Windows 10

Data Sources: File monitoring, Process monitoring, Process command-line parameters

Table 551. Table References

Links

https://attack.mitre.org/wiki/Technique/T1099

http://windowsir.blogspot.com/2013/07/howto-determinedetect-use-of-anti.html

Setuid and Setgid

When the setuid or setgid bits are set on Linux or macOS for an application, this means that the application will run with the privileges of the owning user or group respectively. Normally an application is run in the current user’s context, regardless of which user or group owns the application. There are instances where programs need to be executed in an elevated context to function properly, but the user running them doesn’t need the elevated privileges. Instead of creating an entry in the sudoers file, which must be done by root, any user can specify the setuid or setgid flag to be set for their own applications. These bits are indicated with an "s" instead of an "x" when viewing a file’s attributes via <code>ls -l</code>. The <code>chmod</code> program can set these bits with via bitmasking, <code>chmod 4777 [file]</code> or via shorthand naming, <code>chmod u+s [file]</code>.

An adversary can take advantage of this to either do a shell escape or exploit a vulnerability in an application with the setsuid or setgid bits to get code running in a different user’s context.

Detection: Monitor the file system for files that have the setuid or setgid bits set. Monitor for execution of utilities, like chmod, and their command-line arguments to look for setuid or setguid bits being set.

Platforms: Linux, MacOS, OS X

Data Sources: File monitoring, Process Monitoring, Process command-line parameters

Effective Permissions: Administrator, root

Table 552. Table References

Links

https://attack.mitre.org/wiki/Technique/T1166

Brute Force

Adversaries may use brute force techniques to attempt access to accounts when passwords are unknown or when password hashes are obtained.

Credential Dumping to obtain password hashes may only get an adversary so far when Pass the Hash is not an option. Techniques to systematically guess the passwords used to compute hashes are available, or the adversary may use a pre-computed rainbow table. Cracking hashes is usually done on adversary-controlled systems outside of the target network.Valid Accounts. If authentication failures are high, then there may be a brute force attempt to gain access to a system using legitimate credentials.

Also monitor for many failed authentication attempts across various accounts that may result from password spraying attempts.

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Windows 10, Linux, MacOS, OS X

Data Sources: Authentication logs

Contributors: John Strand

Table 553. Table References

Links

https://attack.mitre.org/wiki/Technique/T1110

http://www.blackhillsinfosec.com/?p=4645

http://www.cylance.com/assets/Cleaver/Cylance%20Operation%20Cleaver%20Report.pdf

https://en.wikipedia.org/wiki/Password%20cracking

Modify Registry

Adversaries may interact with the Windows Registry to hide configuration information within Registry keys, remove information as part of cleaning up, or as part of other techniques to aid in Reg may be used for local or remote Registry modification.Valid Accounts are required, along with access to the remote system’s Windows Admin Shares for RPC communication.

Detection: Modifications to the Registry are normal and occur throughout typical use of the Windows operating system. Changes to Registry entries that load software on Windows startup that do not correlate with known software, patch cycles, etc., are suspicious, as are additions or changes to files within the startup folder. Changes could also include new services and modification of existing binary paths to point to malicious files. If a change to a service-related entry occurs, then it will likely be followed by a local or remote service start or restart to execute the file.

Monitor processes and command-line arguments for actions that could be taken to change or delete information in the Registry. Remote access tools with built-in features may interact directly with the Windows API to gather information. Information may also be acquired through Windows system management tools such as Windows Management Instrumentation and PowerShell, which may require additional logging features to be configured in the operating system to collect necessary information for analysis.

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Windows 10

Data Sources: Windows Registry, File monitoring, Process monitoring, Process command-line parameters

Table 554. Table References

Links

https://attack.mitre.org/wiki/Technique/T1112

https://technet.microsoft.com/en-us/library/cc754820.aspx

https://technet.microsoft.com/en-us/library/cc732643.aspx

Screen Capture

Adversaries may attempt to take screen captures of the desktop to gather information over the course of an operation. Screen capturing functionality may be included as a feature of a remote access tool used in post-compromise operations.

===Mac===

On OSX, the native command <code>screencapture</code> is used to capture screenshots.

===Linux===

On Linux, there is the native command <code>xwd</code>.[[Citation: Antiquated Mac Malware]]

Detection: Monitoring for screen capture behavior will depend on the method used to obtain data from the operating system and write output files. Detection methods could include collecting information from unusual processes using API calls used to obtain image data, and monitoring for image files written to disk. The sensor data may need to be correlated with other events to identify malicious activity, depending on the legitimacy of this behavior within a given network environment.

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Windows 10, Linux, MacOS, OS X

Data Sources: API monitoring, Process monitoring, File monitoring

Table 555. Table References

Links

https://attack.mitre.org/wiki/Technique/T1113

https://blog.malwarebytes.com/threat-analysis/2017/01/new-mac-backdoor-using-antiquated-code/

AppleScript

macOS and OS X applications send AppleEvent messages to each other for interprocess communications (IPC). These messages can be easily scripted with AppleScript for local or remote IPC. Osascript executes AppleScript and any other Open Scripting Architecture (OSA) language scripts. A list of OSA languages installed on a system can be found by using the <code>osalang</code> program. AppleEvent messages can be sent independently or as part of a script. These events can locate open windows, send keystrokes, and interact with almost any open application locally or remotely.

Adversaries can use this to interact with open SSH connection, move to remote machines, and even present users with fake dialog boxes. These events cannot start applications remotely (they can start them locally though), but can interact with applications if they’re already running remotely. Since this is a scripting language, it can be used to launch more common techniques as well such as a reverse shell via python [[Citation: Macro Malware Targets Macs]]. Scripts can be run from the command lie via <code>osascript /path/to/script</code> or <code>osascript -e "script here"</code>.

Detection: Monitor for execution of AppleScript through osascript that may be related to other suspicious behavior occurring on the system.

Platforms: MacOS, OS X

Data Sources: API monitoring, System calls, Process Monitoring, Process command-line parameters

Table 556. Table References

Links

https://attack.mitre.org/wiki/Technique/T1155

https://securingtomorrow.mcafee.com/mcafee-labs/macro-malware-targets-macs/

Launchctl

Launchctl controls the macOS launchd process which handles things like launch agents and launch daemons, but can execute other commands or programs itself. Launchctl supports taking subcommands on the command-line, interactively, or even redirected from standard input. By loading or reloading launch agents or launch daemons, adversaries can install persistence or execute changes they made [[Citation: Sofacy Komplex Trojan]]. Running a command from launchctl is as simple as <code>launchctl submit -l <labelName> — /Path/to/thing/to/execute "arg" "arg" "arg"</code>. Loading, unloading, or reloading launch agents or launch daemons can require elevated privileges.

Adversaries can abuse this functionality to execute code or even bypass whitelisting if launchctl is an allowed process.

Detection: Knock Knock can be used to detect persistent programs such as those installed via launchctl as launch agents or launch daemons. Additionally, every launch agent or launch daemon must have a corresponding plist file on disk somewhere which can be monitored. Monitor process execution from launchctl/launchd for unusual or unknown processes.

Platforms: MacOS, OS X

Data Sources: File monitoring, Process Monitoring, Process command-line parameters

Table 557. Table References

Links

https://attack.mitre.org/wiki/Technique/T1152

https://researchcenter.paloaltonetworks.com/2016/09/unit42-sofacys-komplex-os-x-trojan/

Indicator Removal from Tools

If a malicious tool is detected and quarantined or otherwise curtailed, an adversary may be able to determine why the malicious tool was detected (the indicator), modify the tool by removing the indicator, and use the updated version that is no longer detected by the target’s defensive systems or subsequent targets that may use similar systems.

A good example of this is when malware is detected with a file signature and quarantined by anti-virus software. An adversary who can determine that the malware was quarantined because of its file signature may use Software Packing or otherwise modify the file so it has a different signature, and then re-use the malware.

Detection: The first detection of a malicious tool may trigger an anti-virus or other security tool alert. Similar events may also occur at the boundary through network IDS, email scanning appliance, etc. The initial detection should be treated as an indication of a potentially more invasive intrusion. The alerting system should be thoroughly investigated beyond that initial alert for activity that was not detected. Adversaries may continue with an operation, assuming that individual events like an anti-virus detect will not be investigated or that an analyst will not be able to conclusively link that event to other activity occurring on the network.

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Windows 10, Linux, MacOS, OS X

Data Sources: Process use of network, Process monitoring, Process command-line parameters, Anti-virus, Binary file metadata

Table 558. Table References

Links

https://attack.mitre.org/wiki/Technique/T1066

Dylib Hijacking

macOS and OS X use a common method to look for required dynamic libraries (dylib) to load into a program based on search paths. Adversaries can take advantage of ambiguous paths to plant dylibs to gain privilege escalation or persistence.

A common method is to see what dylibs an application uses, then plant a malicious version with the same name higher up in the search path. This typically results in the dylib being in the same folder as the application itself[[Citation: Writing Bad Malware for OSX]][[Citation: Malware Persistence on OS X]]. If the program is configured to run at a higher privilege level than the current user, then when the dylib is loaded into the application, the dylib will also run at that elevated level. This can be used by adversaries as a privilege escalation technique.

Detection: Objective-See’s Dylib Hijacking Scanner can be used to detect potential cases of dylib hijacking. Monitor file systems for moving, renaming, replacing, or modifying dylibs. Changes in the set of dylibs that are loaded by a process (compared to past behavior) that do not correlate with known software, patches, etc., are suspicious. Check the system for multiple dylibs with the same name and monitor which versions have historically been loaded into a process.

Platforms: MacOS, OS X

Data Sources: File monitoring

Effective Permissions: Administrator, root

Table 559. Table References

Links

https://attack.mitre.org/wiki/Technique/T1157

https://www.blackhat.com/docs/us-15/materials/us-15-Wardle-Writing-Bad-A-Malware-For-OS-X.pdf

https://www.rsaconference.com/writable/presentations/file%20upload/ht-r03-malware-persistence-on-os-x-yosemite%20final.pdf

Change Default File Association

When a file is opened, the default program used to open the file (also called the file association or handler) is checked. File association selections are stored in the Windows Registry and can be edited by users, administrators, or programs that have Registry access.[[Citation: Microsoft Change Default Programs]][[Citation: Microsoft File Handlers]] Applications can modify the file association for a given file extension to call an arbitrary program when a file with the given extension is opened.

Detection: Collect and analyze changes to Registry keys that associate file extensions to default applications for execution and correlate with unknown process launch activity or unusual file types for that process.

User file association preferences are stored under <code> [HKEY_CURRENT_USER]\Software\Microsoft\Windows\CurrentVersion\Explorer\FileExts</code> and override associations configured under <code>[HKEY_CLASSES_ROOT]</code>. Changes to a user’s preference will occur under this entry’s subkeys.

Also look for abnormal process call trees for execution of other commands that could relate to actions or other techniques.

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Windows 10

Data Sources: Windows Registry, Process monitoring, Process command-line parameters

Contributors: Stefan Kanthak

Table 560. Table References

Links

https://attack.mitre.org/wiki/Technique/T1042

http://msdn.microsoft.com/en-us/library/bb166549.aspx

https://support.microsoft.com/en-us/help/18539/windows-7-change-default-programs

Space after Filename

Adversaries can hide a program’s true filetype by changing the extension of a file. With certain file types (specifically this does not work with .app extensions), appending a space to the end of a filename will change how the file is processed by the operating system. For example, if there is a Mach-O executable file called evil.bin, when it is double clicked by a user, it will launch Terminal.app and execute. If this file is renamed to evil.txt, then when double clicked by a user, it will launch with the default text editing application (not executing the binary). However, if the file is renamed to "evil.txt " (note the space at the end), then when double clicked by a user, the true file type is determined by the OS and handled appropriately and the binary will be executed[[Citation: Mac Backdoors are back]].

Adversaries can use this feature to trick users into double clicking benign-looking files of any format and ultimately executing something malicious.

Detection: It’s not common for spaces to be at the end of filenames, so this is something that can easily be checked with file monitoring. From the user’s perspective though, this is very hard to notice from within the Finder.app or on the command-line in Terminal.app. Processes executed from binaries containing non-standard extensions in the filename are suspicious.

Platforms: Linux, MacOS, OS X

Data Sources: File monitoring, Process Monitoring

Table 561. Table References

Links

https://attack.mitre.org/wiki/Technique/T1151

https://arstechnica.com/security/2016/07/after-hiatus-in-the-wild-mac-backdoors-are-suddenly-back/

Email Collection

Adversaries may target user email to collect sensitive information from a target.

Files containing email data can be acquired from a user’s system, such as Outlook storage or cache files .pst and .ost.

Adversaries may leverage a user’s credentials and interact directly with the Exchange server to acquire information from within a network.

Some adversaries may acquire user credentials and access externally facing webmail applications, such as Outlook Web Access.

Detection: There are likely a variety of ways an adversary could collect email from a target, each with a different mechanism for detection.

File access of local system email files for Windows Management Instrumentation and PowerShell.

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Windows 10

Data Sources: Authentication logs, File monitoring, Process monitoring, Process use of network

Table 562. Table References

Links

https://attack.mitre.org/wiki/Technique/T1114

System Information Discovery

An adversary may attempt to get detailed information about the operating system and hardware, including version, patches, hotfixes, service packs, and architecture.

===Windows===

Example commands and utilities that obtain this information include <code>ver</code>, Systeminfo, and <code>dir</code> within cmd for identifying information based on present files and directories.

===Mac===

On Mac, the <code>systemsetup</code> command gives a detailed breakdown of the system, but it requires administrative privileges. Additionally, the <code>system_profiler</code> gives a very detailed breakdown of configurations, firewall rules, mounted volumes, hardware, and many other things without needing elevated permissions.

Detection: System and network discovery techniques normally occur throughout an operation as an adversary learns the environment. Data and events should not be viewed in isolation, but as part of a chain of behavior that could lead to other activities based on the information obtained.

Monitor processes and command-line arguments for actions that could be taken to gather system and network information. Remote access tools with built-in features may interact directly with the Windows API to gather information. Information may also be acquired through Windows system management tools such as Windows Management Instrumentation and PowerShell.

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Linux, Windows 10, MacOS, OS X

Data Sources: Process monitoring, Process command-line parameters

Table 563. Table References

Links

https://attack.mitre.org/wiki/Technique/T1082

System Network Connections Discovery

Adversaries may attempt to get a listing of network connections to or from the compromised system they are currently accessing or from remote systems by querying for information over the network.

===Windows===

Utilities and commands that acquire this information include netstat, "net use," and "net session" with Net.

===Mac and Linux ===

In Mac and Linux, <code>netstat</code> and <code>lsof</code> can be used to list current connections. <code>who -a</code> and <code>w</code> can be used to show which users are currently logged in, similar to "net session".

Detection: System and network discovery techniques normally occur throughout an operation as an adversary learns the environment. Data and events should not be viewed in isolation, but as part of a chain of behavior that could lead to other activities, such as Windows Management Instrumentation and PowerShell.

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Windows 10, Linux, MacOS, OS X

Data Sources: Process monitoring, Process command-line parameters

Table 564. Table References

Links

https://attack.mitre.org/wiki/Technique/T1049

Two-Factor Authentication Interception

Use of two- or multifactor authentication is recommended and provides a higher level of security than user names and passwords alone, but organizations should be aware of techniques that could be used to intercept and bypass these security mechanisms. Adversaries may target authentication mechanisms, such as smart cards, to gain access to systems, services, and network resources.

If a smart card is used for two-factor authentication (2FA), then a keylogger will need to be used to obtain the password associated with a smart card during normal use. With both an inserted card and access to the smart card password, an adversary can connect to a network resource using the infected system to proxy the authentication with the inserted hardware token.[[Citation: Mandiant M Trends 2011]]

Other methods of 2FA may be intercepted and used by an adversary to authenticate. It is common for one-time codes to be sent via out-of-band communications (email, SMS). If the device and/or service is not secured, then it may be vulnerable to interception. Although primarily focused on by cyber criminals, these authentication mechanisms have been targeted by advanced actors.[[Citation: Operation Emmental]]

Other hardware tokens, such as RSA SecurID, require the adversary to have access to the physical device or the seed and algorithm in addition to the corresponding credentials.

Detection: Detecting use of proxied smart card connections by an adversary may be difficult because it requires the token to be inserted into a system; thus it is more likely to be in use by a legitimate user and blend in with other network behavior.

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Windows 10, Linux, MacOS, OS X

Contributors: John Lambert, Microsoft Threat Intelligence Center

Table 565. Table References

Links

https://attack.mitre.org/wiki/Technique/T1111

http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/white-papers/wp-finding-holes-operation-emmental.pdf

https://dl.mandiant.com/EE/assets/PDF%20MTrends%202011.pdf

Execution through API

Adversary tools may directly use the Windows application programming interface (API) to execute binaries. Functions such as the Windows API CreateProcess will allow programs and scripts to start other processes with proper path and argument parameters.[[Citation: Microsoft CreateProcess]]

Additional Windows API calls that can be used to execute binaries include:[[Citation: Kanthak Verifier]]

*CreateProcessA() and CreateProcessW(), *CreateProcessAsUserA() and CreateProcessAsUserW(), *CreateProcessInternalA() and CreateProcessInternalW(), *CreateProcessWithLogonW(), CreateProcessWithTokenW(), *LoadLibraryA() and LoadLibraryW(), *LoadLibraryExA() and LoadLibraryExW(), *LoadModule(), *LoadPackagedLibrary(), *WinExec(), *ShellExecuteA() and ShellExecuteW(), *ShellExecuteExA() and ShellExecuteExW()

Detection: Monitoring API calls may generate a significant amount of data and may not be directly useful for defense unless collected under specific circumstances, since benign use of Windows API functions such as CreateProcess are common and difficult to distinguish from malicious behavior. Correlation of other events with behavior surrounding API function calls using API monitoring will provide additional context to an event that may assist in determining if it is due to malicious behavior. Correlation of activity by process lineage by process ID may be sufficient.

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Windows 10

Data Sources: API monitoring, Process monitoring

Contributors: Stefan Kanthak

Table 566. Table References

Links

https://attack.mitre.org/wiki/Technique/T1106

http://msdn.microsoft.com/en-us/library/ms682425

https://skanthak.homepage.t-online.de/verifier.html

Component Object Model Hijacking

The Microsoft Component Object Model (COM) is a system within Windows to enable interaction between software components through the operating system.[[Citation: Microsoft Component Object Model]] Adversaries can use this system to insert malicious code that can be executed in place of legitimate software through hijacking the COM references and relationships as a means for persistence. Hijacking a COM object requires a change in the Windows Registry to replace a reference to a legitimate system component which may cause that component to not work when executed. When that system component is executed through normal system operation the adversary’s code will be executed instead.[[Citation: GDATA COM Hijacking]] An adversary is likely to hijack objects that are used frequently enough to maintain a consistent level of persistence, but are unlikely to break noticeable functionality within the system as to avoid system instability that could lead to detection.

Detection: There are opportunities to detect COM hijacking by searching for Registry references that have been replaced and through Registry operations replacing know binary paths with unknown paths. Even though some third party applications define user COM objects, the presence of objects within <code>HKEY_CURRENT_USER\Software\Classes\CLSID\</code> may be anomalous and should be investigated since user objects will be loaded prior to machine objects in <code>HKEY_LOCAL_MACHINE\SOFTWARE\Classes\CLSID\</code>.[[Citation: Endgame COM Hijacking]] Registry entries for existing COM objects may change infrequently. When an entry with a known good path and binary is replaced or changed to an unusual value to point to an unknown binary in a new location, then it may indicate suspicious behavior and should be investigated. Likewise, if software DLL loads are collected and analyzed, any unusual DLL load that can be correlated with a COM object Registry modification may indicate COM hijacking has been performed.

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Windows 10

Data Sources: Windows Registry, DLL monitoring, Loaded DLLs

Contributors: ENDGAME

Table 567. Table References

Links

https://attack.mitre.org/wiki/Technique/T1122

https://blog.gdatasoftware.com/2014/10/23941-com-object-hijacking-the-discreet-way-of-persistence

https://msdn.microsoft.com/library/ms694363.aspx

https://www.endgame.com/blog/how-hunt-detecting-persistence-evasion-com

Clipboard Data

Adversaries may collect data stored in the Windows clipboard from users copying information within or between applications.

===Windows===

Applications can access clipboard data by using the Windows API.[[Citation: MSDN Clipboard]]

===Mac===

OSX provides a native command, <code>pbpaste</code>, to grab clipboard contents [[Citation: Operating with EmPyre]].

Detection: Access to the clipboard is a legitimate function of many applications on a Windows system. If an organization chooses to monitor for this behavior, then the data will likely need to be correlated against other suspicious or non-user-driven activity.

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Windows 10, Linux, MacOS, OS X

Data Sources: API monitoring

Table 568. Table References

Links

https://attack.mitre.org/wiki/Technique/T1115

http://www.rvrsh3ll.net/blog/empyre/operating-with-empyre/

https://msdn.microsoft.com/en-us/library/ms649012

InstallUtil

InstallUtil is a command-line utility that allows for installation and uninstallation of resources by executing specific installer components specified in .NET binaries.[[Citation: MSDN InstallUtil]] InstallUtil is located in the .NET directory on a Windows system: <code>C:\Windows\Microsoft.NET\Framework\v<version>\InstallUtil.exe</code>.InstallUtil.exe is digitally signed by Microsoft.

Adversaries may use InstallUtil to proxy execution of code through a trusted Windows utility. InstallUtil may also be used to bypass process whitelisting through use of attributes within the binary that execute the class decorated with the attribute <code>[System.ComponentModel.RunInstaller(true)]</code>.[[Citation: SubTee GitHub All The Things Application Whitelisting Bypass]]

Detection: Use process monitoring to monitor the execution and arguments of InstallUtil.exe. Compare recent invocations of InstallUtil.exe with prior history of known good arguments and executed binaries to determine anomalous and potentially adversarial activity. Command arguments used before and after the InstallUtil.exe invocation may also be useful in determining the origin and purpose of the binary being executed.

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Windows 10

Data Sources: Process monitoring, Process command-line parameters

Contributors: Casey Smith

Table 569. Table References

Links

https://attack.mitre.org/wiki/Technique/T1118

https://msdn.microsoft.com/en-us/library/50614e95.aspx

https://github.com/subTee/AllTheThings

Data Obfuscation

Command and control (C2) communications are hidden (but not necessarily encrypted) in an attempt to make the content more difficult to discover or decipher and to make the communication less conspicuous and hide commands from being seen. This encompasses many methods, such as adding junk data to protocol traffic, using steganography, commingling legitimate traffic with C2 communications traffic, or using a non-standard data encoding system, such as a modified Base64 encoding for the message body of an HTTP request.

Detection: Analyze network data for uncommon data flows (e.g., a client sending significantly more data than it receives from a server). Processes utilizing the network that do not normally have network communication or have never been seen before are suspicious. Analyze packet contents to detect communications that do not follow the expected protocol behavior for the port that is being used.[[Citation: University of Birmingham C2]]

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Linux, Windows 10, MacOS, OS X

Data Sources: Packet capture, Process use of network, Process monitoring, Network protocol analysis

Table 570. Table References

Links

https://attack.mitre.org/wiki/Technique/T1001

https://arxiv.org/ftp/arxiv/papers/1408/1408.1136.pdf

Shortcut Modification

Shortcuts or symbolic links are ways of referencing other files or programs that will be opened or executed when the shortcut is clicked or executed by a system startup process. Adversaries could use shortcuts to execute their tools for persistence. They may create a new shortcut as a means of indirection that may use Masquerading to look like a legitimate program. Adversaries could also edit the target path or entirely replace an existing shortcut so their tools will be executed instead of the intended legitimate program.

Detection: Since a shortcut’s target path likely will not change, modifications to shortcut files that do not correlate with known software changes, patches, removal, etc., may be suspicious. Analysis should attempt to relate shortcut file change or creation events to other potentially suspicious events based on known adversary behavior such as process launches of unknown executables that make network connections.

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Windows 10

Data Sources: File monitoring, Process monitoring, Process command-line parameters

Table 571. Table References

Links

https://attack.mitre.org/wiki/Technique/T1023

Obfuscated Files or Information

Adversaries may attempt to make an executable or file difficult to discover or analyze by encrypting, encoding, or otherwise obfuscating its contents on the system.

Detection: Detection of file obfuscation is difficult unless artifacts are left behind by the obfuscation process that are uniquely detectable with a signature. If detection of the obfuscation itself is not possible, it may be possible to detect the malicious activity that caused the obfuscated file (for example, the method that was used to write, read, or modify the file on the file system).

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Windows 10

Data Sources: Network protocol analysis, Process use of network, File monitoring, Malware reverse engineering, Binary file metadata

Table 572. Table References

Links

https://attack.mitre.org/wiki/Technique/T1027

Video Capture

An adversary can leverage a computer’s peripheral devices (e.g., integrated cameras or webcams) or applications (e.g., video call services) to capture video recordings for the purpose of gathering information. Images may also be captured from devices or applications, potentially in specified intervals, in lieu of video files.

Malware or scripts may be used to interact with the devices through an available API provided by the operating system or an application to capture video or images. Video or image files may be written to disk and exfiltrated later. This technique differs from Screen Capture due to use of specific devices or applications for video recording rather than capturing the victim’s screen.

Detection: Detection of this technique may be difficult due to the various APIs that may be used. Telemetry data regarding API use may not be useful depending on how a system is normally used, but may provide context to other potentially malicious activity occurring on a system.

Behavior that could indicate technique use include an unknown or unusual process accessing APIs associated with devices or software that interact with the video camera, recording devices, or recording software, and a process periodically writing files to disk that contain video or camera image data.

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Windows 10

Data Sources: Process monitoring, File monitoring, API monitoring

Table 573. Table References

Links

https://attack.mitre.org/wiki/Technique/T1125

Gatekeeper Bypass

In macOS and OS X, when applications or programs are downloaded from the internet, there is a special attribute set on the file called <code>com.apple.quarantine</code>. This attribute is read by Apple’s Gatekeeper defense program at execution time and provides a prompt to the user to allow or deny execution.

Apps loaded onto the system from USB flash drive, optical disk, external hard drive, or even from a drive shared over the local network won’t set this flag. Additionally, other utilities or events like drive-by downloads don’t necessarily set it either. This completely bypasses the built-in Gatekeeper check[[Citation: Methods of Mac Malware Persistence]]. The presence of the quarantine flag can be checked by the xattr command <code>xattr /path/to/MyApp.app</code> for <code>com.apple.quarantine</code>. Similarly, given sudo access or elevated permission, this attribute can be removed with xattr as well, <code>sudo xattr -r -d com.apple.quarantine /path/to/MyApp.app</code> [[Citation: Clearing quarantine attribute]][[Citation: OceanLotus for OS X]].

In typical operation, a file will be downloaded from the internet and given a quarantine flag before being saved to disk. When the user tries to open the file or application, macOS’s gatekeeper will step in and check for the presence of this flag. If it exists, then macOS will then prompt the user to confirmation that they want to run the program and will even provide the url where the application came from. However, this is all based on the file being downloaded from a quarantine-savvy application [[Citation: Bypassing Gatekeeper]].

Detection: Monitoring for the removal of the <code>com.apple.quarantine</code> flag by a user instead of the operating system is a suspicious action and should be examined further.

Platforms: MacOS, OS X

Table 574. Table References

Links

https://attack.mitre.org/wiki/Technique/T1144

https://derflounder.wordpress.com/2012/11/20/clearing-the-quarantine-extended-attribute-from-downloaded-applications/

https://blog.malwarebytes.com/cybercrime/2015/10/bypassing-apples-gatekeeper/

https://www.virusbulletin.com/uploads/pdf/conference/vb2014/VB2014-Wardle.pdf

https://www.alienvault.com/blogs/labs-research/oceanlotus-for-os-x-an-application-bundle-pretending-to-be-an-adobe-flash-update

Masquerading

Masquerading occurs when an executable, legitimate or malicious, is placed in a commonly trusted location (such as C:\Windows\System32) or named with a common name (such as "explorer.exe" or "svchost.exe") to bypass tools that trust executables by relying on file name or path. An adversary may even use a renamed copy of a legitimate utility, such as rundll32.exe.[[Citation: Endgame Masquerade Ball]] Masquerading also may be done to deceive defenders and system administrators into thinking a file is benign by associating the name with something that is thought to be legitimate.

Detection: Collect file hashes; file names that do not match their expected hash are suspect. Perform file monitoring; files with known names but in unusual locations are suspect. Likewise, files that are modified outside of an update or patch are suspect.

If file names are mismatched between the binary name on disk and the binary’s resource section, this is a likely indicator that a binary was renamed after it was compiled. Collecting and comparing disk and resource filenames for binaries could provide useful leads, but may not always be indicative of malicious activity.[[Citation: Endgame Masquerade Ball]]

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Windows 10, Linux, MacOS, OS X

Data Sources: File monitoring, Process monitoring, Binary file metadata

Contributors: ENDGAME

Table 575. Table References

Links

https://attack.mitre.org/wiki/Technique/T1036

https://www.endgame.com/blog/how-hunt-masquerade-ball

DLL Side-Loading

Programs may specify DLLs that are loaded at runtime. Programs that improperly or vaguely specify a required DLL may be open to a vulnerability in which an unintended DLL is loaded. Side-loading vulnerabilities specifically occur when Windows Side-by-Side (WinSxS) manifests[[Citation: MSDN Manifests]] are not explicit enough about characteristics of the DLL to be loaded. Adversaries may take advantage of a legitimate program that is vulnerable to side-loading to load a malicious DLL.[[Citation: Stewart 2014]]

Adversaries likely use this technique as a means of masking actions they perform under a legitimate, trusted system or software process.

Detection: Monitor processes for unusual activity (e.g., a process that does not use the network begins to do so). Track DLL metadata, such as a hash, and compare DLLs that are loaded at process execution time against previous executions to detect differences that do not correlate with patching or updates.

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Windows 10

Data Sources: Process use of network, Process monitoring, Loaded DLLs

Table 576. Table References

Links

https://attack.mitre.org/wiki/Technique/T1073

https://www.fireeye.com/content/dam/fireeye-www/global/en/current-threats/pdfs/rpt-dll-sideloading.pdf

https://msdn.microsoft.com/en-us/library/aa375365

Automated Exfiltration

Data, such as sensitive documents, may be exfiltrated through the use of automated processing or Scripting after being gathered during Exfiltration Over Command and Control Channel and Exfiltration Over Alternative Protocol.

Detection: Monitor process file access patterns and network behavior. Unrecognized processes or scripts that appear to be traversing file systems and sending network traffic may be suspicious.

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Windows 10, Linux, MacOS, OS X

Data Sources: File monitoring, Process monitoring, Process use of network

Table 577. Table References

Links

https://attack.mitre.org/wiki/Technique/T1020

Network Service Scanning

Adversaries may attempt to get a listing of services running on remote hosts, including those that may be vulnerable to remote software exploitation. Methods to acquire this information include port scans and vulnerability scans using tools that are brought onto a system.

Detection: System and network discovery techniques normally occur throughout an operation as an adversary learns the environment. Data and events should not be viewed in isolation, but as part of a chain of behavior that could lead to other activities, such as [[Lateral Movement]], based on the information obtained.

Normal, benign system and network events from legitimate remote service scanning may be uncommon, depending on the environment and how they are used. Legitimate open port and vulnerability scanning may be conducted within the environment and will need to be deconflicted with any detection capabilities developed. Network intrusion detection systems can also be used to identify scanning activity. Monitor for process use of the networks and inspect intra-network flows to detect port scans.

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Windows 10

Data Sources: Netflow/Enclave netflow, Network protocol analysis, Packet capture, Process use of network, Process command-line parameters

Table 578. Table References

Links

https://attack.mitre.org/wiki/Technique/T1046

.bash_profile and .bashrc

<code>~/.bash_profile</code> and <code>~/.bashrc</code> are executed in a user’s context when a new shell opens or when a user logs in so that their environment is set correctly. <code>~/.bash_profile</code> is executed for login shells and <code>~/.bashrc</code> is executed for interactive non-login shells. This means that when a user logs in (via username and password) to the console (either locally or remotely via something like SSH), <code>~/.bash_profile</code> is executed before the initial command prompt is returned to the user. After that, every time a new shell is opened, <code>~/.bashrc</code> is executed. This allows users more fine grained control over when they want certain commands executed.

Mac’s Terminal.app is a little different in that it runs a login shell by default each time a new terminal window is opened, thus calling <code>~/.bash_profile</code> each time instead of <code>~/.bashrc</code>.

These files are meant to be written to by the local user to configure their own environment; however, adversaries can also insert code into these files to gain persistence each time a user logs in or opens a new shell.

Detection: While users may customize their <code>~/.bashrc</code> and <code>~/.bash_profile</code> files , there are only certain types of commands that typically appear in these files. Monitor for abnormal commands such as execution of unknown programs, opening network sockets, or reaching out across the network when user profiles are loaded during the login process.

Platforms: Linux, MacOS, OS X

Data Sources: File monitoring, Process Monitoring, Process command-line parameters, Process use of network

Table 579. Table References

Links

https://attack.mitre.org/wiki/Technique/T1156

Bash History

Bash keeps track of the commands users type on the command-line with the "history" utility. Once a user logs out, the history is flushed to the user’s <code>.bash_history</code> file. For each user, this file resides at the same location: <code>~/.bash_history</code>. Typically, this file keeps track of the user’s last 500 commands. Users often type usernames and passwords on the command-line as parameters to programs, which then get saved to this file when they log out. Attackers can abuse this by looking through the file for potential credentials.[[Citation: External to DA, the OS X Way]]

Detection: Monitoring when the user’s <code>.bash_history</code> is read can help alert to suspicious activity. While users do typically rely on their history of commands, they often access this history through other utilities like "history" instead of commands like <code>cat ~/.bash_history</code>.

Platforms: Linux, MacOS, OS X

Data Sources: File monitoring, Process monitoring, Process command-line parameters

Table 580. Table References

Links

https://attack.mitre.org/wiki/Technique/T1139

http://www.slideshare.net/StephanBorosh/external-to-da-the-os-x-way

Replication Through Removable Media

Adversaries may move to additional systems, possibly those on disconnected or air-gapped networks, by copying malware to removable media and taking advantage of Autorun features when the media is inserted into another system and executes. This may occur through modification of executable files stored on removable media or by copying malware and renaming it to look like a legitimate file to trick users into executing it on a separate system.

Detection: Monitor file access on removable media. Detect processes that execute from removable media after it is mounted or when initiated by a user. If a remote access tool is used in this manner to move laterally, then additional actions are likely to occur after execution, such as opening network connections for [[Command and Control]] and system and network information .

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Windows 10

Data Sources: File monitoring, Data loss prevention

Table 581. Table References

Links

https://attack.mitre.org/wiki/Technique/T1091

Remote Desktop Protocol

Remote desktop is a common feature in operating systems. It allows a user to log into an interactive session with a system desktop graphical user interface on a remote system. Microsoft refers to its implementation of the Remote Desktop Protocol (RDP) as Remote Desktop Services (RDS).Remote Services similar to RDS.

Adversaries may connect to a remote system over RDP/RDS to expand access if the service is enabled and allows access to accounts with known credentials. Adversaries will likely use Accessibility Features technique for .[[Citation: Alperovitch Malware]]

Detection: Use of RDP may be legitimate, depending on the network environment and how it is used. Other factors, such as access patterns and activity that occurs after a remote login, may indicate suspicious or malicious behavior with RDP. Monitor for user accounts logged into systems they would not normally access or access patterns to multiple systems over a relatively short period of time.

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Windows 10

Data Sources: Authentication logs, Netflow/Enclave netflow, Process monitoring

Table 582. Table References

Links

https://attack.mitre.org/wiki/Technique/T1076

https://technet.microsoft.com/en-us/windowsserver/ee236407.aspx

http://blog.crowdstrike.com/adversary-tricks-crowdstrike-treats/

Scheduled Transfer

Data exfiltration may be performed only at certain times of day or at certain intervals. This could be done to blend traffic patterns with normal activity or availability.

When scheduled exfiltration is used, other exfiltration techniques likely apply as well to transfer the information out of the network, such as Exfiltration Over Command and Control Channel and Exfiltration Over Alternative Protocol.

Detection: Monitor process file access patterns and network behavior. Unrecognized processes or scripts that appear to be traversing file systems and sending network traffic may be suspicious. Network connections to the same destination that occur at the same time of day for multiple days are suspicious.

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Linux, Windows 10, MacOS, OS X

Data Sources: Netflow/Enclave netflow, Process use of network, Process monitoring

Table 583. Table References

Links

https://attack.mitre.org/wiki/Technique/T1029

Bypass User Account Control

Windows User Account Control (UAC) allows a program to elevate its privileges to perform a task under administrator-level permissions by prompting the user for confirmation. The impact to the user ranges from denying the operation under high enforcement to allowing the user to perform the action if they are in the local administrators group and click through the prompt or allowing them to enter an administrator password to complete the action.DLL Injection and unusual loaded DLLs through DLL Search Order Hijacking, which indicate attempts to gain access to higher privileged processes.

Some UAC bypass methods rely on modifying specific, user-accessible Registry settings. For example:

  • The <code>eventvwr.exe</code> bypass uses the <code>[HKEY_CURRENT_USER]\Software\Classes\mscfile\shell\open\command</code> Registry key.[[Citation: enigma0x3 Fileless UAC Bypass]]

  • The <code>sdclt.exe</code> bypass uses the <code>[HKEY_CURRENT_USER]\Software\Microsoft\Windows\CurrentVersion\App Paths\control.exe</code> and <code>[HKEY_CURRENT_USER]\Software\Classes\exefile\shell\runas\command\isolatedCommand</code> Registry keys.[[Citation: enigma0x3 sdclt app paths]][[Citation: enigma0x3 sdclt bypass]]

Analysts should monitor these Registry settings for unauthorized changes.

Platforms: Windows Server 2012, Windows 7, Windows 8, Windows Server 2008 R2, Windows Server 2012 R2, Windows 8.1, Windows 10

Data Sources: System calls, Process monitoring, Authentication logs, Process command-line parameters

Effective Permissions: Administrator

Contributors: Stefan Kanthak, Casey Smith

Table 584. Table References

Links

https://attack.mitre.org/wiki/Technique/T1088

https://enigma0x3.net/2016/08/15/fileless-uac-bypass-using-eventvwr-exe-and-registry-hijacking/

https://github.com/hfiref0x/UACME

https://technet.microsoft.com/en-us/itpro/windows/keep-secure/how-user-account-control-works

https://enigma0x3.net/2017/03/14/bypassing-uac-using-app-paths/

https://msdn.microsoft.com/en-us/library/ms679687.aspx

https://enigma0x3.net/2017/03/17/fileless-uac-bypass-using-sdclt-exe/

https://technet.microsoft.com/en-US/magazine/2009.07.uac.aspx

http://www.pretentiousname.com/misc/win7%20uac%20whitelist2.html

http://pen-testing.sans.org/blog/pen-testing/2013/08/08/psexec-uac-bypass

https://blog.fortinet.com/2016/12/16/malicious-macro-bypasses-uac-to-elevate-privilege-for-fareit-malware

Logon Scripts

===Windows===

Windows allows logon scripts to be run whenever a specific user or group of users log into a system.[[Citation: TechNet Logon Scripts]] The scripts can be used to perform administrative functions, which may often execute other programs or send information to an internal logging server.

If adversaries can access these scripts, they may insert additional code into the logon script to execute their tools when a user logs in. This code can allow them to maintain persistence on a single system, if it is a local script, or to move laterally within a network, if the script is stored on a central server and pushed to many systems. Depending on the access configuration of the logon scripts, either local credentials or an administrator account may be necessary.

===Mac===

Mac allows login and logoff hooks to be run as root whenever a specific user logs into or out of a system. A login hook tells Mac OS X to execute a certain script when a user logs in, but unlike startup items, a login hook executes as root[[Citation: creating login hook]]. There can only be one login hook at a time though. If adversaries can access these scripts, they can insert additional code to the script to execute their tools when a user logs in.

Detection: Monitor logon scripts for unusual access by abnormal users or at abnormal times. Look for files added or modified by unusual accounts outside of normal administration duties.

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Windows 10, MacOS, OS X

Data Sources: File monitoring, Process monitoring

Table 585. Table References

Links

https://attack.mitre.org/wiki/Technique/T1037

https://support.apple.com/de-at/HT2420

https://technet.microsoft.com/en-us/library/cc758918(v=ws.10).aspx

Connection Proxy

A connection proxy is used to direct network traffic between systems or act as an intermediary for network communications. Many tools exist that enable traffic redirection through proxies or port redirection, including HTRAN, ZXProxy, and ZXPortMap.[[Citation: Trend Micro APT Attack Tools]]

The definition of a proxy can also be expanded out to encompass trust relationships between networks in peer-to-peer, mesh, or trusted connections between networks consisting of hosts or systems that regularly communicate with each other.

The network may be within a single organization or across organizations with trust relationships. Adversaries could use these types of relationships to manage command and control communications, to reduce the number of simultaneous outbound network connections, to provide resiliency in the face of connection loss, or to ride over existing trusted communications paths between victims to avoid suspicion.

Detection: Processes utilizing the network that do not normally have network communication or have never been seen before are suspicious. Network activities disassociated from user-driven actions from processes that normally require user direction are suspicious.

Analyze network data for uncommon data flows (e.g., a client sending significantly more data than it receives from a server or between clients that should not or often do not communicate with one another). Processes utilizing the network that do not normally have network communication or have never been seen before are suspicious. Analyze packet contents to detect communications that do not follow the expected protocol behavior for the port that is being used.[[Citation: University of Birmingham C2]]

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Linux, Windows 10, MacOS, OS X

Data Sources: Process use of network, Process monitoring, Netflow/Enclave netflow, Packet capture

Contributors: Walker Johnson

Table 586. Table References

Links

https://attack.mitre.org/wiki/Technique/T1090

http://blog.trendmicro.com/trendlabs-security-intelligence/in-depth-look-apt-attack-tools-of-the-trade/

https://arxiv.org/ftp/arxiv/papers/1408/1408.1136.pdf

Sudo

The sudoers file, <code>/etc/sudoers</code>, describes which users can run which commands and from which terminals. This also describes which commands users can run as other users or groups. This provides the idea of least privilege such that users are running in their lowest possible permissions for most of the time and only elevate to other users or permissions as needed, typically by prompting for a password. However, the sudoers file can also specify when to not prompt users for passwords with a line like <code>user1 ALL=(ALL) NOPASSWD: ALL</code>[[Citation: OSX.Dok Malware]].

Adversaries can take advantage of these configurations to execute commands as other users or spawn processes with higher privileges. You must have elevated privileges to edit this file though.

Detection: On Linux, auditd can alert every time a user’s actual ID and effective ID are different (this is what happens when you sudo).

Platforms: Linux, MacOS, OS X

Data Sources: File monitoring

Effective Permissions: root

Table 587. Table References

Links

https://attack.mitre.org/wiki/Technique/T1169

https://blog.malwarebytes.com/threat-analysis/2017/04/new-osx-dok-malware-intercepts-web-traffic/

Office Application Startup

Microsoft Office is a fairly common application suite on Windows-based operating systems within an enterprise network. There are multiple mechanisms that can be used with Office for persistence when an Office-based application is started.

===Office Template Macros===

Microsoft Office contains templates that are part of common Office applications and are used to customize styles. The base templates within the application are used each time an application starts.[[Citation: Microsoft Change Normal Template]]

Office Visual Basic for Applications (VBA) macros[[Citation: MSDN VBA in Office]] can inserted into the base templated and used to execute code when the respective Office application starts in order to obtain persistence. Examples for both Word and Excel have been discovered and published. By default, Word has a Normal.dotm template created that can be modified to include a malicious macro. Excel does not have a template file created by default, but one can be added that will automatically be loaded.[[Citation: enigma0x3 normal.dotm]][[Citation: Hexacorn Office Template Macros]]

Word Normal.dotm location:<code>C:\Users\(username)\AppData\Roaming\Microsoft\Templates\Normal.dotm</code>

Excel Personal.xlsb location:<code>C:\Users\(username)\AppData\Roaming\Microsoft\Excel\XLSTART\PERSONAL.XLSB</code>

An adversary may need to enable macros to execute unrestricted depending on the system or enterprise security policy on use of macros.

===Office Test===

A Registry location was found that when a DLL reference was placed within it the corresponding DLL pointed to by the binary path would be executed every time an Office application is started[[Citation: Hexacorn Office Test]]

<code>HKEY_CURRENT_USER\Software\Microsoft\Office test\Special\Perf</code>

===Add-ins===

Office add-ins can be used to add functionality to Office programs.[[Citation: Microsoft Office Add-ins]]

Add-ins can also be used to obtain persistence because they can be set to execute code when an Office application starts. There are different types of add-ins that can be used by the various Office products; including Word/Excel add-in Libraries (WLL/XLL), VBA add-ins, Office Component Object Model (COM) add-ins, automation add-ins, VBA Editor (VBE), and Visual Studio Tools for Office (VSTO) add-ins.[[Citation: MRWLabs Office Persistence Add-ins]]

Detection: Many Office-related persistence mechanisms require changes to the Registry and for binaries, files, or scripts to be written to disk or existing files modified to include malicious scripts. Collect events related to Registry key creation and modification for keys that could be used for Office-based persistence. Modification to base templated, like Normal.dotm, should also be investigated since the base templates should likely not contain VBA macros. Changes to the Office macro security settings should also be investigated.

Monitor and validate the Office trusted locations on the file system and audit the Registry entries relevant for enabling add-ins.[[Citation: MRWLabs Office Persistence Add-ins]]

Non-standard process execution trees may also indicate suspicious or malicious behavior. Collect process execution information including process IDs (PID) and parent process IDs (PPID) and look for abnormal chains of activity resulting from Office processes. If winword.exe is the parent process for suspicious processes and activity relating to other adversarial techniques, then it could indicate that the application was used maliciously.

Platforms: Windows 10, Windows Server 2012, Windows 7, Windows 8, Windows Server 2008 R2, Windows Server 2012 R2, Windows 8.1, Windows XP, Windows Vista

Data Sources: Process monitoring, Process command-line parameters, Windows Registry, File monitoring

Contributors: Loic Jaquemet, Ricardo Dias

Table 588. Table References

Links

https://attack.mitre.org/wiki/Technique/T1137

https://msdn.microsoft.com/en-us/vba/office-shared-vba/articles/getting-started-with-vba-in-office

http://www.hexacorn.com/blog/2014/04/16/beyond-good-ol-run-key-part-10/

https://enigma0x3.net/2014/01/23/maintaining-access-with-normal-dotm/comment-page-1/

https://support.office.com/article/Add-or-remove-add-ins-0af570c4-5cf3-4fa9-9b88-403625a0b460

https://labs.mwrinfosecurity.com/blog/add-in-opportunities-for-office-persistence/

http://www.hexacorn.com/blog/2017/04/19/beyond-good-ol-run-key-part-62/

https://support.office.com/article/Change-the-Normal-template-Normal-dotm-06de294b-d216-47f6-ab77-ccb5166f98ea

Regsvr32

Regsvr32.exe is a command-line program used to register and unregister object linking and embedding controls, including dynamic link libraries (DLLs), on Windows systems. Regsvr32.exe can be used to execute arbitrary binaries.[[Citation: Microsoft Regsvr32]]

Adversaries may take advantage of this functionality to proxy execution of code to avoid triggering security tools that may not monitor execution of, and modules loaded by, the regsvr32.exe process because of whitelists or false positives from Windows using regsvr32.exe for normal operations. Regsvr32.exe is also a Microsoft signed binary.

Regsvr32.exe can also be used to specifically bypass process whitelisting using functionality to load COM scriptlets to execute DLLs under user permissions. Since regsvr32.exe is network and proxy aware, the scripts can be loaded by passing a uniform resource locator (URL) to file on an external Web server as an argument during invocation. This method makes no changes to the Registry as the COM object is not actually registered, only executed.[[Citation: SubTee Regsvr32 Whitelisting Bypass]] This variation of the technique has been used in campaigns targeting governments.[[Citation: FireEye Regsvr32 Targeting Mongolian Gov]]

Detection: Use process monitoring to monitor the execution and arguments of regsvr32.exe. Compare recent invocations of regsvr32.exe with prior history of known good arguments and loaded files to determine anomalous and potentially adversarial activity. Command arguments used before and after the regsvr32.exe invocation may also be useful in determining the origin and purpose of the script or DLL being loaded.

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Windows 10

Data Sources: Loaded DLLs, Process monitoring, Windows Registry, Process command-line parameters

Contributors: Casey Smith

Table 589. Table References

Links

https://attack.mitre.org/wiki/Technique/T1117

https://support.microsoft.com/en-us/kb/249873

https://subt0x10.blogspot.com/2017/04/bypass-application-whitelisting-script.html

https://www.fireeye.com/blog/threat-research/2017/02/spear%20phishing%20techn.html

File and Directory Discovery

Adversaries may enumerate files and directories or may search in specific locations of a host or network share for certain information within a file system.

===Windows===

Example utilities used to obtain this information are <code>dir</code> and <code>tree</code>.Windows Management Instrumentation and PowerShell.

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Linux, Windows 10, MacOS, OS X

Data Sources: File monitoring, Process monitoring, Process command-line parameters

Table 590. Table References

Links

https://attack.mitre.org/wiki/Technique/T1083

http://blog.jpcert.or.jp/2016/01/windows-commands-abused-by-attackers.html

Commonly Used Port

Adversaries may communicate over a commonly used port to bypass firewalls or network detection systems and to blend with normal network activity to avoid more detailed inspection. They may use commonly open ports such as * TCP:80 (HTTP) * TCP:443 (HTTPS) * TCP:25 (SMTP) * TCP/UDP:53 (DNS)

They may use the protocol associated with the port or a completely different protocol.

For connections that occur internally within an enclave (such as those between a proxy or pivot node and other nodes), examples of common ports are * TCP/UDP:135 (RPC) * TCP/UDP:22 (SSH) * TCP/UDP:3389 (RDP)

Detection: Analyze network data for uncommon data flows (e.g., a client sending significantly more data than it receives from a server). Processes utilizing the network that do not normally have network communication or have never been seen before are suspicious. Analyze packet contents to detect communications that do not follow the expected protocol behavior for the port that is being used.[[Citation: University of Birmingham C2]]

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Linux, Windows 10, MacOS, OS X

Data Sources: Packet capture, Netflow/Enclave netflow, Process use of network, Process monitoring

Table 591. Table References

Links

https://attack.mitre.org/wiki/Technique/T1043

https://arxiv.org/ftp/arxiv/papers/1408/1408.1136.pdf

Data Encoding

Command and control (C2) information is encoded using a standard data encoding system. Use of data encoding may be to adhere to existing protocol specifications and includes use of ASCII, Unicode, Base64, MIME, UTF-8, or other binary-to-text and character encoding systems.[[Citation: Wikipedia Binary-to-text Encoding]][[Citation: Wikipedia Character Encoding]] Some data encoding systems may also result in data compression, such as gzip.

Detection: Analyze network data for uncommon data flows (e.g., a client sending significantly more data than it receives from a server). Processes utilizing the network that do not normally have network communication or have never been seen before are suspicious. Analyze packet contents to detect communications that do not follow the expected protocol behavior for the port that is being used.[[Citation: University of Birmingham C2]]

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Linux, Windows 10, MacOS, OS X

Data Sources: Packet capture, Process use of network, Process Monitoring, Network protocol analysis

Contributors: Itzik Kotler, SafeBreach

Table 592. Table References

Links

https://attack.mitre.org/wiki/Technique/T1132

https://en.wikipedia.org/wiki/Character%20encoding

https://en.wikipedia.org/wiki/Binary-to-text%20encoding

https://arxiv.org/ftp/arxiv/papers/1408/1408.1136.pdf

Credentials in Files

Adversaries may search local file systems and remote file shares for files containing passwords. These can be files created by users to store their own credentials, shared credential stores for a group of individuals, configuration files containing passwords for a system or service, or source code/binary files containing embedded passwords.

It is possible to extract passwords from backups or saved virtual machines through Credential Dumping.Valid Accounts for more information.

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Windows 10, Linux, MacOS, OS X

Data Sources: File monitoring, Process command-line parameters

Table 593. Table References

Links

https://attack.mitre.org/wiki/Technique/T1081

http://carnal0wnage.attackresearch.com/2014/05/mimikatz-against-virtual-machine-memory.html

http://blogs.technet.com/b/srd/archive/2014/05/13/ms14-025-an-update-for-group-policy-preferences.aspx

PowerShell

PowerShell is a powerful interactive command-line interface and scripting environment included in the Windows operating system.[[Citation: TechNet PowerShell]] Adversaries can use PowerShell to perform a number of actions, including discovery of information and execution of code. Examples include the Start-Process cmdlet which can be used to run an executable and the Invoke-Command cmdlet which runs a command locally or on a remote computer.

PowerShell may also be used to download and run executables from the Internet, which can be executed from disk or in memory without touching disk.

Administrator permissions are required to use PowerShell to connect to remote systems.

A number of PowerShell-based offensive testing tools are available, including Empire,[[Citation: Github PowerShell Empire]] PowerSploit,[[Citation: Powersploit]] and PSAttack.[[Citation: Github PSAttack]]

Detection: If proper execution policy is set, adversaries will likely be able to define their own execution policy if they obtain administrator or system access, either through the Registry or at the command line. This change in policy on a system may be a way to detect malicious use of PowerShell. If PowerShell is not used in an environment, then simply looking for PowerShell execution may detect malicious activity.

It is also beneficial to turn on PowerShell logging to gain increased fidelity in what occurs during execution.[[Citation: Malware Archaeology PowerShell Cheat Sheet]] PowerShell 5.0 introduced enhanced logging capabilities, and some of those features have since been added to PowerShell 4.0. Earlier versions of PowerShell do not have many logging features.[[Citation: FireEye PowerShell Logging 2016]] An organization can gather PowerShell execution details in a data analytic platform to supplement it with other data.

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Windows 10

Data Sources: Windows Registry, File monitoring, Process monitoring, Process command-line parameters

Table 594. Table References

Links

https://attack.mitre.org/wiki/Technique/T1086

https://github.com/PowerShellEmpire/Empire

http://www.malwarearchaeology.com/s/Windows-PowerShell-Logging-Cheat-Sheet-ver-June-2016-v2.pdf

https://github.com/mattifestation/PowerSploit

https://github.com/jaredhaight/PSAttack

https://technet.microsoft.com/en-us/scriptcenter/dd742419.aspx

https://www.fireeye.com/blog/threat-research/2016/02/greater%20visibilityt.html

Security Software Discovery

Adversaries may attempt to get a listing of security software, configurations, defensive tools, and sensors that are installed on the system. This may include things such as local firewall rules, anti-virus, and virtualization. These checks may be built into early-stage remote access tools.

===Windows===

Example commands that can be used to obtain security software information are netsh, <code>reg query</code> with Reg, <code>dir</code> with cmd, and Tasklist, but other indicators of discovery behavior may be more specific to the type of software or security system the adversary is looking for.

===Mac===

It’s becoming more common to see macOS malware perform checks for LittleSnitch and KnockKnock software.

Detection: System and network discovery techniques normally occur throughout an operation as an adversary learns the environment. Data and events should not be viewed in isolation, but as part of a chain of behavior that could lead to other activities, such as lateral movement, based on the information obtained.

Monitor processes and command-line arguments for actions that could be taken to gather system and network information. Remote access tools with built-in features may interact directly with the Windows API to gather information. Information may also be acquired through Windows system management tools such as Windows Management Instrumentation and PowerShell.

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Windows 10, MacOS, OS X

Data Sources: File monitoring, Process monitoring, Process command-line parameters

Table 595. Table References

Links

https://attack.mitre.org/wiki/Technique/T1063

Trap

The <code>trap</code> command allows programs and shells to specify commands that will be executed upon receiving interrupt signals. A common situation is a script allowing for graceful termination and handling of common keyboard interrupts like <code>ctrl+c</code> and <code>ctrl+d</code>. Adversaries can use this to register code to be executed when the shell encounters specific interrupts either to gain execution or as a persistence mechanism. Trap commands are of the following format <code>trap 'command list' signals</code> where "command list" will be executed when "signals" are received.

Detection: Trap commands must be registered for the shell or programs, so they appear in files. Monitoring files for suspicious or overly broad trap commands can narrow down suspicious behavior during an investigation. Monitor for suspicious processes executed through trap interrupts.

Platforms: Linux, MacOS, OS X

Data Sources: File monitoring, Process Monitoring, Process command-line parameters

Table 596. Table References

Links

https://attack.mitre.org/wiki/Technique/T1154

Modify Existing Service

Windows service configuration information, including the file path to the service’s executable, is stored in the Registry. Service configurations can be modified using utilities such as sc.exe and Reg.

Adversaries can modify an existing service to persist malware on a system by using system utilities or by using custom tools to interact with the Windows API. Use of existing services is a type of Masquerading that may make detection analysis more challenging. Modifying existing services may interrupt their functionality or may enable services that are disabled or otherwise not commonly used.

Detection: Look for changes to service Registry entries that do not correlate with known software, patch cycles, etc. Changes to the binary path and the service startup type changed from manual or disabled to automatic, if it does not typically do so, may be suspicious. Tools such as Sysinternals Autoruns may also be used to detect system service changes that could be attempts at persistence.cmd commands or scripts.

Look for abnormal process call trees from known services and for execution of other commands that could relate to Windows Management Instrumentation and PowerShell, so additional logging may need to be configured to gather the appropriate data.

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Windows 10

Data Sources: Windows Registry, File monitoring, Process monitoring, Process command-line parameters

Table 597. Table References

Links

https://attack.mitre.org/wiki/Technique/T1031

https://technet.microsoft.com/en-us/sysinternals/bb963902

Standard Cryptographic Protocol

Adversaries use command and control over an encrypted channel using a known encryption protocol like HTTPS or SSL/TLS. The use of strong encryption makes it difficult for defenders to detect signatures within adversary command and control traffic.

Some adversaries may use other encryption protocols and algorithms with symmetric keys, such as RC4, that rely on encryption keys encoded into malware configuration files and not public key cryptography. Such keys may be obtained through malware reverse engineering.

Detection: SSL/TLS inspection is one way of detecting command and control traffic within some encrypted communication channels.[[Citation: SANS Decrypting SSL]] SSL/TLS inspection does come with certain risks that should be considered before implementing to avoid potential security issues such as incomplete certificate validation.[[Citation: SEI SSL Inspection Risks]]

If malware uses encryption with symmetric keys, it may be possible to obtain the algorithm and key from samples and use them to decode network traffic to detect malware communications signatures.[[Citation: Fidelis DarkComet]]

In general, analyze network data for uncommon data flows (e.g., a client sending significantly more data than it receives from a server). Processes utilizing the network that do not normally have network communication or have never been seen before are suspicious. Analyze packet contents to detect communications that do not follow the expected protocol behavior for the port that is being used.[[Citation: University of Birmingham C2]]

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Linux, Windows 10, MacOS, OS X

Data Sources: Packet capture, Netflow/Enclave netflow, Malware reverse engineering, Process use of network, Process monitoring, SSL/TLS inspection

Table 598. Table References

Links

https://attack.mitre.org/wiki/Technique/T1032

https://www.fidelissecurity.com/sites/default/files/FTA%201018%20looking%20at%20the%20sky%20for%20a%20dark%20comet.pdf

http://www.sans.org/reading-room/whitepapers/analyst/finding-hidden-threats-decrypting-ssl-34840

https://arxiv.org/ftp/arxiv/papers/1408/1408.1136.pdf

https://insights.sei.cmu.edu/cert/2015/03/the-risks-of-ssl-inspection.html

Private Keys

Private cryptographic keys and certificates are used for authentication, encryption/decryption, and digital signatures.Remote Services like SSH or for use in decrypting other collected files such as email. Common key and certificate file extensions include: .key, .pgp, .gpg, .ppk., .p12, .pem, pfx, .cer, .p7b, .asc. Adversaries may also look in common key directories, such as <code>~/.ssh</code> for SSH keys on *nix-based systems or <code>C:\Users\(username)\.ssh\</code> on Windows.

Private keys should require a password or passphrase for operation, so an adversary may also use Input Capture for keylogging or attempt to Brute Force the passphrase off-line.

Adversary tools have been discovered that search compromised systems for file extensions relating to cryptographic keys and certificates.[[Citation: Kaspersky Careto]][[Citation: Palo Alto Prince of Persia]]

Detection: Monitor access to files and directories related to cryptographic keys and certificates as a means for potentially detecting access patterns that may indicate collection and exfiltration activity. Collect authentication logs and look for potentially abnormal activity that may indicate improper use of keys or certificates for remote authentication.

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Linux, Windows 10, MacOS, OS X

Data Sources: File monitoring

Contributors: Itzik Kotler, SafeBreach

Table 599. Table References

Links

https://attack.mitre.org/wiki/Technique/T1145

https://researchcenter.paloaltonetworks.com/2016/06/unit42-prince-of-persia-game-over/

https://kasperskycontenthub.com/wp-content/uploads/sites/43/vlpdfs/unveilingthemask%20v1.0.pdf

https://en.wikipedia.org/wiki/Public-key%20cryptography

Valid Accounts

Adversaries may steal the credentials of a specific user or service account using [[Credential Access]] techniques. Compromised credentials may be used to bypass access controls placed on various resources on hosts and within the network and may even be used for persistent access to remote systems. Compromised credentials may also grant an adversary increased privilege to specific systems or access to restricted areas of the network. Adversaries may choose not to use malware or tools in conjunction with the legitimate access those credentials provide to make it harder to detect their presence.

Adversaries may also create accounts, sometimes using pre-defined account names and passwords, as a means for persistence through backup access in case other means are unsuccessful.

The overlap of credentials and permissions across a network of systems is of concern because the adversary may be able to pivot across accounts and systems to reach a high level of access (i.e., domain or enterprise administrator) to bypass access controls set within the enterprise.[[Citation: TechNet Credential Theft]]

Detection: Configure robust, consistent account activity audit policies across the enterprise.[[Citation: TechNet Audit Policy]] Look for suspicious account behavior across systems that share accounts, either user, admin, or service accounts. Examples: one account logged into multiple systems simultaneously; multiple accounts logged into the same machine simultaneously; accounts logged in at odd times or outside of business hours. Activity may be from interactive login sessions or process ownership from accounts being used to execute binaries on a remote system as a particular account. Correlate other security systems with login information (e.g., a user has an active login session but has not entered the building or does not have VPN access).

Perform regular audits of domain and local system accounts to detect accounts that may have been created by an adversary for persistence.

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Windows 10, Linux, MacOS, OS X

Data Sources: Authentication logs, Process monitoring

Effective Permissions: User, Administrator

Table 600. Table References

Links

https://attack.mitre.org/wiki/Technique/T1078

https://technet.microsoft.com/en-us/library/dn487457.aspx

https://technet.microsoft.com/en-us/library/dn535501.aspx

LC_MAIN Hijacking

As of OS X 10.8, mach-O binaries introduced a new header called LC_MAIN that points to the binary’s entry point for execution. Previously, there were two headers to achieve this same effect: LC_THREAD and LC_UNIXTHREAD [[Citation: Prolific OSX Malware History]]. The entry point for a binary can be hijacked so that initial execution flows to a malicious addition (either another section or a code cave) and then goes back to the initial entry point so that the victim doesn’t know anything was different [[Citation: Methods of Mac Malware Persistence]]. By modifying a binary in this way, application whitelisting can be bypassed because the file name or application path is still the same.

Detection: Determining the original entry point for a binary is difficult, but checksum and signature verification is very possible. Modifying the LC_MAIN entry point or adding in an additional LC_MAIN entry point invalidates the signature for the file and can be detected. Collect running process information and compare against known applications to look for suspicious behavior.

Platforms: MacOS, OS X

Data Sources: Binary file metadata, Malware reverse engineering, Process Monitoring

Table 601. Table References

Links

https://attack.mitre.org/wiki/Technique/T1149

https://assets.documentcloud.org/documents/2459197/bit9-carbon-black-threat-research-report-2015.pdf

https://www.virusbulletin.com/uploads/pdf/conference/vb2014/VB2014-Wardle.pdf

System Service Discovery

Adversaries may try to get information about registered services. Commands that may obtain information about services using operating system utilities are "sc," "tasklist /svc" using Tasklist, and "net start" using Net, but adversaries may also use other tools as well.

Detection: System and network discovery techniques normally occur throughout an operation as an adversary learns the environment. Data and events should not be viewed in isolation, but as part of a chain of behavior that could lead to other activities, such as Windows Management Instrumentation and PowerShell.

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Windows 10

Data Sources: Process monitoring, Process command-line parameters

Table 602. Table References

Links

https://attack.mitre.org/wiki/Technique/T1007

System Owner/User Discovery

===Windows===

Adversaries may attempt to identify the primary user, currently logged in user, set of users that commonly uses a system, or whether a user is actively using the system. They may do this, for example, by retrieving account usernames or by using Credential Dumping. The information may be collected in a number of different ways using other Windows Management Instrumentation and PowerShell.

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Linux, Windows 10, MacOS, OS X

Data Sources: File monitoring, Process monitoring, Process command-line parameters

Table 603. Table References

Links

https://attack.mitre.org/wiki/Technique/T1033

Multiband Communication

Some adversaries may split communications between different protocols. There could be one protocol for inbound command and control and another for outbound data, allowing it to bypass certain firewall restrictions. The split could also be random to simply avoid data threshold alerts on any one communication.

Detection: Analyze network data for uncommon data flows (e.g., a client sending significantly more data than it receives from a server). Processes utilizing the network that do not normally have network communication or have never been seen before are suspicious. Analyze packet contents to detect communications that do not follow the expected protocol behavior for the port that is being used.[[Citation: University of Birmingham C2]] Correlating alerts between multiple communication channels can further help identify command-and-control behavior.

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Linux, Windows 10, MacOS, OS X

Data Sources: Packet capture, Netflow/Enclave netflow, Process use of network, Malware reverse engineering, Process monitoring

Table 604. Table References

Links

https://attack.mitre.org/wiki/Technique/T1026

https://arxiv.org/ftp/arxiv/papers/1408/1408.1136.pdf

Pass the Ticket

Pass the ticket (PtT)Valid Accounts are captured by Credential Dumping. A user’s service tickets or ticket granting ticket (TGT) may be obtained, depending on the level of access. A service ticket allows for access to a particular resource, whereas a TGT can be used to request service tickets from the Ticket Granting Service (TGS) to access any resource the user has privileges to access.[[Citation: ADSecurity AD Kerberos Attacks]][[Citation: GentilKiwi Pass the Ticket]]

Silver Tickets can be obtained for services that use Kerberos as an authentication mechanism and are used to generate tickets to access that particular resource and the system that hosts the resource (e.g., SharePoint).[[Citation: ADSecurity AD Kerberos Attacks]]

Golden Tickets can be obtained for the domain using the Key Distribution Service account KRBTGT account NTLM hash, which enables generation of TGTs for any account in Active Directory.[[Citation: Campbell 2014]]

Detection: Audit all Kerberos authentication and credential use events and review for discrepancies. Unusual remote authentication events that correlate with other suspicious activity (such as writing and executing binaries) may indicate malicious activity.

Event ID 4769 is generated on the Domain Controller when using a golden ticket after the KRBTGT password has been reset twice, as mentioned in the mitigation section. The status code 0x1F indicates the action has failed due to "Integrity check on decrypted field failed" and indicates misuse by a previously invalidated golden ticket.[[Citation: CERT-EU Golden Ticket Protection]]

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Windows 10

Data Sources: Authentication logs

Contributors: Ryan Becwar

Table 605. Table References

Links

https://attack.mitre.org/wiki/Technique/T1097

http://defcon.org/images/defcon-22/dc-22-presentations/Campbell/DEFCON-22-Christopher-Campbell-The-Secret-Life-of-Krbtgt.pdf

http://www.aorato.com/labs/pass-the-ticket/

https://adsecurity.org/?p=556

http://blog.gentilkiwi.com/securite/mimikatz/pass-the-ticket-kerberos

Windows Remote Management

Windows Remote Management (WinRM) is the name of both a Windows service and a protocol that allows a user to interact with a remote system (e.g., run an executable, modify the Registry, modify services).[[Citation: Microsoft WinRM]] It may be called with the <code>winrm</code> command or by any number of programs such as PowerShell.[[Citation: Jacobsen 2014]]

Detection: Monitor use of WinRM within an environment by tracking service execution. If it is not normally used or is disabled, then this may be an indicator of suspicious behavior. Monitor processes created and actions taken by the WinRM process or a WinRM invoked script to correlate it with other related events.

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Windows 10

Data Sources: File monitoring, Authentication logs, Netflow/Enclave netflow, Process monitoring, Process command-line parameters

Table 606. Table References

Links

https://attack.mitre.org/wiki/Technique/T1028

http://msdn.microsoft.com/en-us/library/aa384426

http://www.slideee.com/slide/lateral-movement-with-powershell

Audio Capture

An adversary can leverage a computer’s peripheral devices (e.g., microphones and webcams) or applications (e.g., voice and video call services) to capture audio recordings for the purpose of listening into sensitive conversations to gather information.

Malware or scripts may be used to interact with the devices through an available API provided by the operating system or an application to capture audio. Audio files may be written to disk and exfiltrated later.

Detection: Detection of this technique may be difficult due to the various APIs that may be used. Telemetry data regarding API use may not be useful depending on how a system is normally used, but may provide context to other potentially malicious activity occurring on a system.

Behavior that could indicate technique use include an unknown or unusual process accessing APIs associated with devices or software that interact with the microphone, recording devices, or recording software, and a process periodically writing files to disk that contain audio data.

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Linux, Windows 10

Data Sources: API monitoring, Process monitoring, File monitoring

Table 607. Table References

Links

https://attack.mitre.org/wiki/Technique/T1123

Custom Cryptographic Protocol

Adversaries may use a custom cryptographic protocol or algorithm to hide command and control traffic. A simple scheme, such as XOR-ing the plaintext with a fixed key, will produce a very weak ciphertext.

Custom encryption schemes may vary in sophistication. Analysis and reverse engineering of malware samples may be enough to discover the algorithm and encryption key used.

Some adversaries may also attempt to implement their own version of a well-known cryptographic algorithm instead of using a known implementation library, which may lead to unintentional errors.[[Citation: F-Secure Cosmicduke]]

Detection: If malware uses custom encryption with symmetric keys, it may be possible to obtain the algorithm and key from samples and use them to decode network traffic to detect malware communications signatures.[[Citation: Fidelis DarkComet]]

In general, analyze network data for uncommon data flows (e.g., a client sending significantly more data than it receives from a server). Processes utilizing the network that do not normally have network communication or have never been seen before are suspicious. Analyze packet contents to detect when communications do not follow the expected protocol behavior for the port that is being used.[[Citation: University of Birmingham C2]]

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Linux, Windows 10, MacOS, OS X

Data Sources: Packet capture, Netflow/Enclave netflow, Process use of network, Malware reverse engineering, Process monitoring

Table 608. Table References

Links

https://attack.mitre.org/wiki/Technique/T1024

https://www.f-secure.com/documents/996508/1030745/cosmicduke%20whitepaper.pdf

https://arxiv.org/ftp/arxiv/papers/1408/1408.1136.pdf

https://www.fidelissecurity.com/sites/default/files/FTA%201018%20looking%20at%20the%20sky%20for%20a%20dark%20comet.pdf

Graphical User Interface

Cause a binary or script to execute based on interacting with the file through a graphical user interface (GUI) or in an interactive remote session such as Remote Desktop Protocol.

Detection: Detection of execution through the GUI will likely lead to significant false positives. Other factors should be considered to detect misuse of services that can lead to adversaries gaining access to systems through interactive remote sessions.

Unknown or unusual process launches outside of normal behavior on a particular system occurring through remote interactive sessions are suspicious. Collect and audit security logs that may indicate access to and use of [[Legitimate Credentials]] to access remote systems within the network.

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Windows 10, Linux, MacOS, OS X

Data Sources: File monitoring, Process monitoring, Process command-line parameters, Binary file metadata

Table 609. Table References

Links

https://attack.mitre.org/wiki/Technique/T1061

Fallback Channels

Adversaries may use fallback or alternate communication channels if the primary channel is compromised or inaccessible in order to maintain reliable command and control and to avoid data transfer thresholds.

Detection: Analyze network data for uncommon data flows (e.g., a client sending significantly more data than it receives from a server). Processes utilizing the network that do not normally have network communication or have never been seen before are suspicious. Analyze packet contents to detect communications that do not follow the expected protocol behavior for the port that is being used.[[Citation: University of Birmingham C2]]

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Linux, Windows 10, MacOS, OS X

Data Sources: Packet capture, Netflow/Enclave netflow, Malware reverse engineering, Process use of network, Process monitoring

Table 610. Table References

Links

https://attack.mitre.org/wiki/Technique/T1008

https://arxiv.org/ftp/arxiv/papers/1408/1408.1136.pdf

Exploitation of Vulnerability

Exploitation of a software vulnerability occurs when an adversary takes advantage of a programming error in a program, service, or within the operating system software or kernel itself to execute adversary-controlled code. Exploiting software vulnerabilities may allow adversaries to run a command or binary on a remote system for lateral movement, escalate a current process to a higher privilege level, or bypass security mechanisms. Exploits may also allow an adversary access to privileged accounts and credentials. One example of this is MS14-068, which can be used to forge Kerberos tickets using domain user permissions.[[Citation: Technet MS14-068]][[Citation: ADSecurity Detecting Forged Tickets]]

Detection: Software exploits may not always succeed or may cause the exploited process to become unstable or crash. Software and operating system crash reports may contain useful contextual information about attempted exploits that correlate with other malicious activity. Exploited processes may exhibit behavior that is unusual for the specific process, such as spawning additional processes or reading and writing to files.

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Windows 10, Linux, MacOS, OS X

Data Sources: Windows Error Reporting, File monitoring, Process monitoring

Effective Permissions: User, Administrator, SYSTEM

Contributors: John Lambert, Microsoft Threat Intelligence Center

Table 611. Table References

Links

https://attack.mitre.org/wiki/Technique/T1068

https://technet.microsoft.com/en-us/library/security/ms14-068.aspx

https://adsecurity.org/?p=1515

Hidden Users

Every user account in macOS has a userID associated with it. When creating a user, you can specify the userID for that account. There is a property value in <code>/Library/Preferences/com.apple.loginwindow</code> called <code>Hide500Users</code> that prevents users with userIDs 500 and lower from appearing at the login screen. By using the Create Account technique with a userID under 500 and enabling this property (setting it to Yes), an adversary can hide their user accounts much more easily: <code>sudo dscl . -create /Users/username UniqueID 401</code>[[Citation: Cybereason OSX Pirrit]].

Detection: This technique prevents the new user from showing up at the log in screen, but all of the other signs of a new user still exist. The user still gets a home directory and will appear in the authentication logs.

Platforms: MacOS, OS X

Data Sources: Authentication logs, File monitoring

Table 612. Table References

Links

https://attack.mitre.org/wiki/Technique/T1147

https://www2.cybereason.com/research-osx-pirrit-mac-os-x-secuirty

Binary Padding

Some security tools inspect files with static signatures to determine if they are known malicious. Adversaries may add data to files to increase the size beyond what security tools are capable of handling or to change the file hash to avoid hash-based blacklists.

Detection: Depending on the method used to pad files, a file-based signature may be capable of detecting padding using a scanning or on-access based tool.

When executed, the resulting process from padded files may also exhibit other behavior characteristics of being used to conduct an intrusion such as system and network information or [[Lateral Movement]], which could be used as event indicators that point to the source file.

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Windows 10, Linux, MacOS, OS X

Table 613. Table References

Links

https://attack.mitre.org/wiki/Technique/T1009

Login Item

MacOS provides the option to list specific applications to run when a user logs in. These applications run under the logged in user’s context, and will be started every time the user logs in. Login items installed using the Service Management Framework are not visible in the System Preferences and can only be removed by the application that created them[[Citation: Adding Login Items]]. Users have direct control over login items installed using a shared file list which are also visible in System Preferences[[Citation: Adding Login Items]]. These login items are stored in the user’s <code>~/Library/Preferences/</code> directory in a plist file called <code>com.apple.loginitems.plist</code>[[Citation: Methods of Mac Malware Persistence]]. Some of these applications can open visible dialogs to the user, but they don’t all have to since there is an option to ‘Hide’ the window. If an adversary can register their own login item or modified an existing one, then they can use it to execute their code for a persistence mechanism each time the user logs in[[Citation: Malware Persistence on OS X]][[Citation: OSX.Dok Malware]].

Detection: All the login items are viewable by going to the Apple menu → System Preferences → Users & Groups → Login items. This area should be monitored and whitelisted for known good applications. Monitor process execution resulting from login actions for unusual or unknown applications.

Platforms: MacOS, OS X

Table 614. Table References

Links

https://attack.mitre.org/wiki/Technique/T1162

https://blog.malwarebytes.com/threat-analysis/2017/04/new-osx-dok-malware-intercepts-web-traffic/

https://developer.apple.com/library/content/documentation/MacOSX/Conceptual/BPSystemStartup/Chapters/CreatingLoginItems.html

https://www.rsaconference.com/writable/presentations/file%20upload/ht-r03-malware-persistence-on-os-x-yosemite%20final.pdf

https://www.virusbulletin.com/uploads/pdf/conference/vb2014/VB2014-Wardle.pdf

Redundant Access

Adversaries may use more than one remote access tool with varying command and control protocols as a hedge against detection. If one type of tool is detected and blocked or removed as a response but the organization did not gain a full understanding of the adversary’s tools and access, then the adversary will be able to retain access to the network. Adversaries may also attempt to gain access to Valid Accounts to use External Remote Services such as external VPNs as a way to maintain access despite interruptions to remote access tools deployed within a target network.Web Shell is one such way to maintain access to a network through an externally accessible Web server.

Detection: Existing methods of detecting remote access tools are helpful. Backup remote access tools or other access points may not have established command and control channels open during an intrusion, so the volume of data transferred may not be as high as the primary channel unless access is lost.

Detection of tools based on beacon traffic, Valid Accounts and External Remote Services to collect account use information.

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Windows 10, Linux, MacOS, OS X

Data Sources: Process monitoring, Process use of network, Packet capture, Network protocol analysis, File monitoring, Authentication logs, Binary file metadata

Table 615. Table References

Links

https://attack.mitre.org/wiki/Technique/T1108

https://www.fireeye.com/content/dam/fireeye-www/services/pdfs/mandiant-apt1-report.pdf

Data Encrypted

Data is encrypted before being exfiltrated in order to hide the information that is being exfiltrated from detection or to make the exfiltration less conspicuous upon inspection by a defender. The encryption is performed by a utility, programming library, or custom algorithm on the data itself and is considered separate from any encryption performed by the command and control or file transfer protocol. Common file archive formats that can encrypt files are RAR and zip.

Other exfiltration techniques likely apply as well to transfer the information out of the network, such as Exfiltration Over Command and Control Channel and Exfiltration Over Alternative Protocol

Detection: Encryption software and encrypted files can be detected in many ways. Common utilities that may be present on the system or brought in by an adversary may be detectable through process monitoring and monitoring for command-line arguments for known encryption utilities. This may yield a significant amount of benign events, depending on how systems in the environment are typically used. Often the encryption key is stated within command-line invocation of the software.

A process that loads the Windows DLL crypt32.dll may be used to perform encryption, decryption, or verification of file signatures.

Network traffic may also be analyzed for entropy to determine if encrypted data is being transmitted.[[Citation: Zhang 2013]] If the communications channel is unencrypted, encrypted files of known file types can be detected in transit during exfiltration with a network intrusion detection or data loss prevention system analyzing file headers.[[Citation: Wikipedia File Header Signatures]]

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Windows 10, Linux, MacOS, OS X

Data Sources: File monitoring, Process monitoring, Process command-line parameters, Binary file metadata

Table 616. Table References

Links

https://attack.mitre.org/wiki/Technique/T1022

http://www.netsec.colostate.edu/zhang/DetectingEncryptedBotnetTraffic.pdf[http://www.netsec.colostate.edu/zhang/DetectingEncryptedBotnetTraffic.pdf]

https://en.wikipedia.org/wiki/List%20of%20file%20signatures

DLL Search Order Hijacking

Windows systems use a common method to look for required DLLs to load into a program.[[Citation: Microsoft DLL Search]] Adversaries may take advantage of the Windows DLL search order and programs that ambiguously specify DLLs to gain privilege escalation and persistence.

Adversaries may perform DLL preloading, also called binary planting attacks,[[Citation: OWASP Binary Planting]] by placing a malicious DLL with the same name as an ambiguously specified DLL in a location that Windows searches before the legitimate DLL. Often this location is the current working directory of the program. Remote DLL preloading attacks occur when a program sets its current directory to a remote location such as a Web share before loading a DLL.[[Citation: Microsoft 2269637]] Adversaries may use this behavior to cause the program to load a malicious DLL.

Adversaries may also directly modify the way a program loads DLLs by replacing an existing DLL or modifying a .manifest or .local redirection file, directory, or junction to cause the program to load a different DLL to maintain persistence or privilege escalation.[[Citation: Microsoft DLL Redirection]][[Citation: Microsoft Manifests]][[Citation: Mandiant Search Order]]

If a search order-vulnerable program is configured to run at a higher privilege level, then the adversary-controlled DLL that is loaded will also be executed at the higher level. In this case, the technique could be used for privilege escalation from user to administrator or SYSTEM or from administrator to SYSTEM, depending on the program.

Programs that fall victim to path hijacking may appear to behave normally because malicious DLLs may be configured to also load the legitimate DLLs they were meant to replace.

Detection: Monitor file systems for moving, renaming, replacing, or modifying DLLs. Changes in the set of DLLs that are loaded by a process (compared with past behavior) that do not correlate with known software, patches, etc., are suspicious. Monitor DLLs loaded into a process and detect DLLs that have the same file name but abnormal paths. Modifications to or creation of .manifest and .local redirection files that do not correlate with software updates are suspicious. Disallow loading of remote DLLs.[[Citation: Microsoft DLL Preloading]]

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Windows 10

Data Sources: File monitoring, DLL monitoring, Process monitoring, Process command-line parameters

Effective Permissions: User, Administrator, SYSTEM

Contributors: Stefan Kanthak

Table 617. Table References

Links

https://attack.mitre.org/wiki/Technique/T1038

https://msdn.microsoft.com/en-US/library/aa375365

https://www.owasp.org/index.php/Binary%20planting

http://msdn.microsoft.com/en-US/library/ms682586

http://blogs.technet.com/b/srd/archive/2010/08/23/more-information-about-dll-preloading-remote-attack-vector.aspx

http://msdn.microsoft.com/en-US/library/ms682600

http://blogs.technet.com/b/msrc/archive/2010/08/21/microsoft-security-advisory-2269637-released.aspx

https://www.mandiant.com/blog/dll-search-order-hijacking-revisited/

Data from Network Shared Drive

Sensitive data can be collected from remote systems via shared network drives (host shared directory, network file server, etc.) that are accessible from the current system prior to cmd may be used to gather information.

Detection: Monitor processes and command-line arguments for actions that could be taken to collect files from a network share. Remote access tools with built-in features may interact directly with the Windows API to gather data. Data may also be acquired through Windows system management tools such as Windows Management Instrumentation and PowerShell.

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Windows 10, Linux, MacOS, OS X

Data Sources: File monitoring, Process monitoring, Process command-line parameters

Table 618. Table References

Links

https://attack.mitre.org/wiki/Technique/T1039

AppInit DLLs

DLLs that are specified in the AppInit_DLLs value in the Registry key <code>HKEY_LOCAL_MACHINE\Software\Microsoft\Windows NT\CurrentVersion\Windows</code> are loaded by user32.dll into every process that loads user32.dll. In practice this is nearly every program. This value can be abused to obtain persistence by causing a DLL to be loaded into most processes on the computer.[[Citation: AppInit Registry]]

The AppInit DLL functionality is disabled in Windows 8 and later versions when secure boot is enabled.[[Citation: AppInit Secure Boot]]

Detection: Monitor DLL loads by processes that load user32.dll and look for DLLs that are not recognized or not normally loaded into a process. Monitor the AppInit_DLLs Registry value for modifications that do not correlate with known software, patch cycles, etc. Tools such as Sysinternals Autoruns may also be used to detect system changes that could be attempts at persistence, including listing current AppInit DLLs.[[Citation: TechNet Autoruns]]

Look for abnormal process behavior that may be due to a process loading a malicious DLL. Data and events should not be viewed in isolation, but as part of a chain of behavior that could lead to other activities, such as making network connections for [[Command and Control]], learning details about the environment through , and conducting [[Lateral Movement]].

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Windows 10

Data Sources: Loaded DLLs, Process monitoring, Windows Registry

Effective Permissions: Administrator, SYSTEM

Table 619. Table References

Links

https://attack.mitre.org/wiki/Technique/T1103

https://support.microsoft.com/en-us/kb/197571

https://msdn.microsoft.com/en-us/library/dn280412

https://technet.microsoft.com/en-us/sysinternals/bb963902

Standard Non-Application Layer Protocol

Use of a standard non-application layer protocol for communication between host and C2 server or among infected hosts within a network. The list of possible protocols is extensive.[[Citation: Wikipedia OSI]] Specific examples include use of network layer protocols, such as the Internet Control Message Protocol (ICMP), and transport layer protocols, such as the User Datagram Protocol (UDP).

ICMP communication between hosts is one example. Because ICMP is part of the Internet Protocol Suite, it is required to be implemented by all IP-compatible hosts;[[Citation: Microsoft ICMP]] however, it is not as commonly monitored as other Internet Protocols such as TCP or UDP and may be used by adversaries to hide communications.

Detection: Analyze network traffic for ICMP messages or other protocols that contain abnormal data or are not normally seen within or exiting the network.

Analyze network data for uncommon data flows (e.g., a client sending significantly more data than it receives from a server). Processes utilizing the network that do not normally have network communication or have never been seen before are suspicious. Analyze packet contents to detect communications that do not follow the expected protocol behavior for the port that is being used.[[Citation: University of Birmingham C2]]

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Linux, Windows 10, MacOS, OS X

Table 620. Table References

Links

https://attack.mitre.org/wiki/Technique/T1095

http://support.microsoft.com/KB/170292

https://arxiv.org/ftp/arxiv/papers/1408/1408.1136.pdf

Plist Modification

Property list (plist) files contain all of the information that macOS and OS X uses to configure applications and services. These files are UT-8 encoded and formatted like XML documents via a series of keys surrounded by < >. They detail when programs should execute, file paths to the executables, program arguments, required OS permissions, and many others. plists are located in certain locations depending on their purpose such as <code>/Library/Preferences</code> (which execute with elevated privileges) and <code>~/Library/Preferences</code> (which execute with a user’s privileges). Adversaries can modify these plist files to point to their own code, can use them to execute their code in the context of another user, bypass whitelisting procedures, or even use them as a persistence mechanism[[Citation: Sofacy Komplex Trojan]].

Detection: File system monitoring can determine if plist files are being modified. Users should not have permission to modify these in most cases. Some software tools like "Knock Knock" can detect persistence mechanisms and point to the specific files that are being referenced. This can be helpful to see what is actually being executed.

Monitor process execution for abnormal process execution resulting from modified plist files. Monitor utilities used to modify plist files or that take a plist file as an argument, which may indicate suspicious activity.

Platforms: MacOS, OS X

Data Sources: File monitoring, Process Monitoring, Process command-line parameters

Table 621. Table References

Links

https://attack.mitre.org/wiki/Technique/T1150

https://researchcenter.paloaltonetworks.com/2016/09/unit42-sofacys-komplex-os-x-trojan/

Netsh Helper DLL

Netsh.exe (also referred to as Netshell) is a command-line scripting utility used to interact with the network configuration of a system. It contains functionality to add helper DLLs for extending functionality of the utility.[[Citation: TechNet Netsh]] The paths to registered netsh.exe helper DLLs are entered into the Windows Registry at <code>HKLM\SOFTWARE\Microsoft\Netsh</code>.

Adversaries can use netsh.exe with helper DLLs to proxy execution of arbitrary code in a persistent manner when netsh.exe is executed automatically with another technique or if other persistent software is present on the system that executes netsh.exe as part of its normal functionality. Examples include some VPN software that invoke netsh.exe.[[Citation: Demaske Netsh Persistence]]

Proof of concept code exists to load Cobalt Strike’s payload using netsh.exe helper DLLs.[[Citation: Github Netsh Helper CS Beacon]]

Detection: It is likely unusual for netsh.exe to have any child processes in most environments. Monitor process executions and investigate any child processes spawned by netsh.exe for malicious behavior. Monitor the <code>HKLM\SOFTWARE\Microsoft\Netsh</code> registry key for any new or suspicious entries that do not correlate with known system files or benign software.[[Citation: Demaske Netsh Persistence]]

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Windows 10

Data Sources: DLL monitoring, Windows Registry, Process monitoring

Contributors: Matthew Demaske, Adaptforward

Table 622. Table References

Links

https://attack.mitre.org/wiki/Technique/T1128

https://technet.microsoft.com/library/bb490939.aspx

https://github.com/outflankbv/NetshHelperBeacon

https://htmlpreview.github.io/?https://github.com/MatthewDemaske/blogbackup/blob/master/netshell.html

Account Manipulation

Account manipulation may aid adversaries in maintaining access to credentials and certain permission levels within an environment. Manipulation could consist of modifying permissions, adding or changing permission groups, modifying account settings, or modifying how authentication is performed. In order to create or manipulate accounts, the adversary must already have sufficient permissions on systems or the domain.

Detection: Collect events that correlate with changes to account objects on systems and the domain, such as event ID 4738.[[Citation: Microsoft User Modified Event]] Monitor for modification of accounts in correlation with other suspicious activity. Changes may occur at unusual times or from unusual systems.

Use of credentials may also occur at unusual times or to unusual systems or services and may correlate with other suspicious activity.

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Windows 10

Data Sources: Authentication logs, API monitoring, Windows event logs

Table 623. Table References

Links

https://attack.mitre.org/wiki/Technique/T1098

https://docs.microsoft.com/windows/device-security/auditing/event-4738

Remote System Discovery

Adversaries will likely attempt to get a listing of other systems by IP address, hostname, or other logical identifier on a network that may be used for Net.

===Mac===

Specific to Mac, the <code>bonjour</code> protocol to discover additional Mac-based systems within the same broadcast domain. Utilities such as "ping" and others can be used to gather information about remote systems.

===Linux===

Utilities such as "ping" and others can be used to gather information about remote systems.

Detection: System and network discovery techniques normally occur throughout an operation as an adversary learns the environment. Data and events should not be viewed in isolation, but as part of a chain of behavior that could lead to other activities, such as Windows Management Instrumentation and PowerShell.

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Windows 10, MacOS, OS X

Data Sources: Network protocol analysis, Process monitoring, Process use of network, Process command-line parameters

Table 624. Table References

Links

https://attack.mitre.org/wiki/Technique/T1018

Permission Groups Discovery

Adversaries may attempt to find local system or domain-level groups and permissions settings.

===Windows===

Examples of commands that can list groups are <code>net group /domain</code> and <code>net localgroup</code> using the Net utility.

===Mac===

On Mac, this same thing can be accomplished with the <code>dscacheutil -q group</code> for the domain, or <code>dscl . -list /Groups</code> for local groups.

===Linux===

On Linux, local groups can be enumerated with the <code>groups</code> command and domain groups via the <code>ldapsearch</code> command.

Detection: System and network discovery techniques normally occur throughout an operation as an adversary learns the environment. Data and events should not be viewed in isolation, but as part of a chain of behavior that could lead to other activities, such as Windows Management Instrumentation and PowerShell.

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Windows 10, Linux, MacOS, OS X

Data Sources: API monitoring, Process monitoring, Process command-line parameters

Table 625. Table References

Links

https://attack.mitre.org/wiki/Technique/T1069

File Deletion

Malware, tools, or other non-native files dropped or created on a system by an adversary may leave traces behind as to what was done within a network and how. Adversaries may remove these files over the course of an intrusion to keep their footprint low or remove them at the end as part of the post-intrusion cleanup process.

There are tools available from the host operating system to perform cleanup, but adversaries may use other tools as well. Examples include native cmd functions such as DEL, secure deletion tools such as Windows Sysinternals SDelete, or other third-party file deletion tools.[[Citation: Trend Micro APT Attack Tools]]

Detection: It may be uncommon for events related to benign command-line functions such as DEL or third-party utilities or tools to be found in an environment, depending on the user base and how systems are typically used. Monitoring for command-line deletion functions to correlate with binaries or other files that an adversary may drop and remove may lead to detection of malicious activity. Another good practice is monitoring for known deletion and secure deletion tools that are not already on systems within an enterprise network that an adversary could introduce. Some monitoring tools may collect command-line arguments, but may not capture DEL commands since DEL is a native function within cmd.exe.

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Linux, Windows 10, MacOS, OS X

Data Sources: File monitoring, Process command-line parameters, Binary file metadata

Contributors: Walker Johnson

Table 626. Table References

Links

https://attack.mitre.org/wiki/Technique/T1107

http://blog.trendmicro.com/trendlabs-security-intelligence/in-depth-look-apt-attack-tools-of-the-trade/

Path Interception

Path interception occurs when an executable is placed in a specific path so that it is executed by an application instead of the intended target. One example of this was the use of a copy of cmd in the current working directory of a vulnerable application that loads a CMD or BAT file with the CreateProcess function.DLL Search Order Hijacking.

Detection: Monitor file creation for files named after partial directories and in locations that may be searched for common processes through the environment variable, or otherwise should not be user writable. Monitor the executing process for process executable paths that are named for partial directories. Monitor file creation for programs that are named after Windows system programs or programs commonly executed without a path (such as "findstr," "net," and "python"). If this activity occurs outside of known administration activity, upgrades, installations, or patches, then it may be suspicious.

Data and events should not be viewed in isolation, but as part of a chain of behavior that could lead to other activities, such as network connections made for [[Command and Control]], learning details about the environment through , and [[Lateral Movement]].

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Windows 10

Data Sources: File monitoring, Process monitoring

Effective Permissions: User, Administrator, SYSTEM

Contributors: Stefan Kanthak

Table 627. Table References

Links

https://attack.mitre.org/wiki/Technique/T1034

https://isc.sans.edu/diary/Help+eliminate+unquoted+path+vulnerabilities/14464

http://technet.microsoft.com/en-us/library/cc723564.aspx#XSLTsection127121120120

https://blogs.technet.microsoft.com/srd/2014/04/08/ms14-019-fixing-a-binary-hijacking-via-cmd-or-bat-file/

http://support.microsoft.com/KB/103000

https://msdn.microsoft.com/en-us/library/fd7hxfdd.aspx

http://msdn.microsoft.com/en-us/library/ms682425

http://msdn.microsoft.com/en-us/library/ms687393

LC_LOAD_DYLIB Addition

Mach-O binaries have a series of headers that are used to perform certain operations when a binary is loaded. The LC_LOAD_DYLIB header in a Mach-O binary tells macOS and OS X which dynamic libraries (dylibs) to load during execution time. These can be added ad-hoc to the compiled binary as long adjustments are made to the rest of the fields and dependencies[[Citation: Writing Bad Malware for OSX]]. There are tools available to perform these changes. Any changes will invalidate digital signatures on binaries because the binary is being modified. Adversaries can remediate this issue by simply removing the LC_CODE_SIGNATURE command from the binary so that the signature isn’t checked at load time[[Citation: Malware Persistence on OS X]].

Detection: Monitor processes for those that may be used to modify binary headers. Monitor file systems for changes to application binaries and invalid checksums/signatures. Changes to binaries that do not line up with application updates or patches are also extremely suspicious.

Platforms: MacOS, OS X

Data Sources: Binary file metadata, Process Monitoring, Process command-line parameters, File monitoring

Table 628. Table References

Links

https://attack.mitre.org/wiki/Technique/T1161

https://www.blackhat.com/docs/us-15/materials/us-15-Wardle-Writing-Bad-A-Malware-For-OS-X.pdf

https://www.rsaconference.com/writable/presentations/file%20upload/ht-r03-malware-persistence-on-os-x-yosemite%20final.pdf

Bootkit

A bootkit is a malware variant that modifies the boot sectors of a hard drive, including the Master Boot Record (MBR) and Volume Boot Record (VBR).[[Citation: MTrends 2016]]

Adversaries may use bootkits to persist on systems at a layer below the operating system, which may make it difficult to perform full remediation unless an organization suspects one was used and can act accordingly.

===Master Boot Record=== The MBR is the section of disk that is first loaded after completing hardware initialization by the BIOS. It is the location of the boot loader. An adversary who has raw access to the boot drive may overwrite this area, diverting execution during startup from the normal boot loader to adversary code.[[Citation: Lau 2011]]

===Volume Boot Record=== The MBR passes control of the boot process to the VBR. Similar to the case of MBR, an adversary who has raw access to the boot drive may overwrite the VBR to divert execution during startup to adversary code.

Detection: Perform integrity checking on MBR and VBR. Take snapshots of MBR and VBR and compare against known good samples. Report changes to MBR and VBR as they occur for indicators of suspicious activity and further analysis.

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Linux, Windows 10

Data Sources: API monitoring, MBR, VBR

Table 629. Table References

Links

https://attack.mitre.org/wiki/Technique/T1067

https://www.fireeye.com/content/dam/fireeye-www/regional/fr%20FR/offers/pdfs/ig-mtrends-2016.pdf

http://www.symantec.com/connect/blogs/are-mbr-infections-back-fashion

Indicator Removal on Host

Adversaries may delete or alter generated event files on a host system, including potentially captured files such as quarantined malware. This may compromise the integrity of the security solution, causing events to go unreported, or make forensic analysis and incident response more difficult due to lack of sufficient data to determine what occurred.

Detection: File system monitoring may be used to detect improper deletion or modification of indicator files. Events not stored on the file system will require different detection mechanisms.

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Windows 10, Linux, MacOS, OS X

Data Sources: File monitoring, Process monitoring, Process command-line parameters

Table 630. Table References

Links

https://attack.mitre.org/wiki/Technique/T1070

Re-opened Applications

Starting in Mac OS X 10.7 (Lion), users can specify certain applications to be re-opened when a user reboots their machine. While this is usually done via a Graphical User Interface (GUI) on an app-by-app basis, there are property list files (plist) that contain this information as well located at <code>~/Library/Preferences/com.apple.loginwindow.plist</code> and <code>~/Library/Preferences/ByHost/com.apple.loginwindow.*.plist</code>.

An adversary can modify one of these files directly to include a link to their malicious executable to provide a persistence mechanism each time the user reboots their machine[[Citation: Methods of Mac Malware Persistence]].

Detection: Monitoring the specific plist files associated with reopening applications can indicate when an application has registered itself to be reopened.

Platforms: MacOS, OS X

Table 631. Table References

Links

https://attack.mitre.org/wiki/Technique/T1164

https://www.virusbulletin.com/uploads/pdf/conference/vb2014/VB2014-Wardle.pdf

Exfiltration Over Other Network Medium

Exfiltration could occur over a different network medium than the command and control channel. If the command and control network is a wired Internet connection, the exfiltration may occur, for example, over a WiFi connection, modem, cellular data connection, Bluetooth, or another radio frequency (RF) channel. Adversaries could choose to do this if they have sufficient access or proximity, and the connection might not be secured or defended as well as the primary Internet-connected channel because it is not routed through the same enterprise network.

Detection: Processes utilizing the network that do not normally have network communication or have never been seen before. Processes that normally require user-driven events to access the network (for example, a mouse click or key press) but access the network without such may be malicious.

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Linux, Windows 10, MacOS, OS X

Data Sources: User interface, Process monitoring

Contributors: Itzik Kotler, SafeBreach

Table 632. Table References

Links

https://attack.mitre.org/wiki/Technique/T1011

Data from Local System

Sensitive data can be collected from local system sources, such as the file system or databases of information residing on the system prior to Command-Line Interface, such as cmd, which has functionality to interact with the file system to gather information. Some adversaries may also use Automated Collection on the local system.

Detection: Monitor processes and command-line arguments for actions that could be taken to collect files from a system. Remote access tools with built-in features may interact directly with the Windows API to gather data. Data may also be acquired through Windows system management tools such as Windows Management Instrumentation and PowerShell.

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Windows 10, Linux, MacOS, OS X

Data Sources: File monitoring, Process monitoring, Process command-line parameters

Table 633. Table References

Links

https://attack.mitre.org/wiki/Technique/T1005

Web Shell

A Web shell is a Web script that is placed on an openly accessible Web server to allow an adversary to use the Web server as a gateway into a network. A Web shell may provide a set of functions to execute or a command-line interface on the system that hosts the Web server. In addition to a server-side script, a Web shell may have a client interface program that is used to talk to the Web server (see, for example, China Chopper Web shell client).Redundant Access or as a persistence mechanism in case an adversary’s primary access methods are detected and removed.

Detection: Web shells can be difficult to detect. Unlike other forms of persistent remote access, they do not initiate connections. The portion of the Web shell that is on the server may be small and innocuous looking. The PHP version of the China Chopper Web shell, for example, is the following short payload:cmd or accessing files that are not in the Web directory. File monitoring may be used to detect changes to files in the Web directory of a Web server that do not match with updates to the Web server’s content and may indicate implantation of a Web shell script. Log authentication attempts to the server and any unusual traffic patterns to or from the server and internal network.[[Citation: US-CERT Alert TA15-314A Web Shells]]

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Windows 10, Linux, MacOS, OS X

Data Sources: File monitoring, Process monitoring, Authentication logs, Netflow/Enclave netflow, Anti-virus

Effective Permissions: User, SYSTEM

Table 634. Table References

Links

https://attack.mitre.org/wiki/Technique/T1100

https://www.fireeye.com/blog/threat-research/2013/08/breaking-down-the-china-chopper-web-shell-part-i.html

https://www.us-cert.gov/ncas/alerts/TA15-314A

Service Registry Permissions Weakness

Windows stores local service configuration information in the Registry under <code>HKLM\SYSTEM\CurrentControlSet\Services</code>. The information stored under a service’s Registry keys can be manipulated to modify a service’s execution parameters through tools such as the service controller, sc.exe, PowerShell, or Reg. Access to Registry keys is controlled through Access Control Lists and permissions.Windows Management Instrumentation and PowerShell, so additional logging may need to be configured to gather the appropriate data.

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Windows 10

Data Sources: Windows Registry, Services, Process command-line parameters

Effective Permissions: SYSTEM

Table 635. Table References

Links

https://attack.mitre.org/wiki/Technique/T1058

https://technet.microsoft.com/en-us/sysinternals/bb963902

https://msdn.microsoft.com/library/windows/desktop/ms724878.aspx

Windows Admin Shares

Windows systems have hidden network shares that are accessible only to administrators and provide the ability for remote file copy and other administrative functions. Example network shares include <code>C$</code>, <code>ADMIN$</code>, and <code>IPC$</code>.

Adversaries may use this technique in conjunction with administrator-level Valid Accounts to remotely access a networked system over server message block (SMB)Scheduled Task, Service Execution, and Windows Management Instrumentation. Adversaries can also use NTLM hashes to access administrator shares on systems with Pass the Hash and certain configuration and patch levels.Net utility can be used to connect to Windows admin shares on remote systems using <code>net use</code> commands with valid credentials.Net, on the command-line interface and techniques that could be used to find remotely accessible systems.

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Windows 10

Data Sources: Process use of network, Authentication logs, Process monitoring, Process command-line parameters

Table 636. Table References

Links

https://attack.mitre.org/wiki/Technique/T1077

http://support.microsoft.com/kb/314984

https://technet.microsoft.com/en-us/library/cc787851.aspx

https://en.wikipedia.org/wiki/Server%20Message%20Block

http://blogs.technet.com/b/jepayne/archive/2015/11/27/tracking-lateral-movement-part-one-special-groups-and-specific-service-accounts.aspx

https://technet.microsoft.com/bb490717.aspx

http://blogs.technet.com/b/jepayne/archive/2015/11/24/monitoring-what-matters-windows-event-forwarding-for-everyone-even-if-you-already-have-a-siem.aspx

Winlogon Helper DLL

Winlogon is a part of some Windows versions that performs actions at logon. In Windows systems prior to Windows Vista, a Registry key can be modified that causes Winlogon to load a DLL on startup. Adversaries may take advantage of this feature to load adversarial code at startup for persistence.

Detection: Monitor for changes to registry entries in <code>HKLM\Software\Microsoft\Windows NT\CurrentVersion\Winlogon\Notify</code> that do not correlate with known software, patch cycles, etc. Tools such as Sysinternals Autoruns may also be used to detect system changes that could be attempts at persistence, including listing current Winlogon helper values.[[Citation: TechNet Autoruns]] New DLLs written to System32 that do not correlate with known good software or patching may also be suspicious.

Look for abnormal process behavior that may be due to a process loading a malicious DLL. Data and events should not be viewed in isolation, but as part of a chain of behavior that could lead to other activities, such as network connections made for [[Command and Control]], learning details about the environment through , and [[Lateral Movement]].

Platforms: Windows Server 2003, Windows XP, Windows Server 2003 R2

Data Sources: Windows Registry, File monitoring, Process monitoring

Table 637. Table References

Links

https://attack.mitre.org/wiki/Technique/T1004

https://technet.microsoft.com/en-us/sysinternals/bb963902

Network Share Discovery

Networks often contain shared network drives and folders that enable users to access file directories on various systems across a network.

===Windows===

File sharing over a Windows network occurs over the SMB protocol.Net can be used to query a remote system for available shared drives using the <code>net view \\remotesystem</code> command. It can also be used to query shared drives on the local system using <code>net share</code>.

Adversaries may look for folders and drives shared on remote systems as a means of identifying sources of information to gather as a precursor for Windows Management Instrumentation and PowerShell.

Platforms: Windows 10, Windows 7, Windows 8, Windows 8.1, Windows Server 2012, Windows Server 2008 R2, Windows Server 2012 R2, Windows Server 2003, Windows Server 2008, Windows XP, Windows Server 2003 R2, Windows Vista, MacOS, OS X

Data Sources: Process Monitoring, Process command-line parameters, Network protocol analysis, Process use of network

Table 638. Table References

Links

https://attack.mitre.org/wiki/Technique/T1135

https://en.wikipedia.org/wiki/Shared%20resource

https://technet.microsoft.com/library/cc770880.aspx

Remote Services

An adversary may use valid credentials to log into a service specifically designed to accept remote connections, such as telnet, SSH, and VNC. The adversary may then perform actions as the logged-on user.

Detection: Correlate use of login activity related to remote services with unusual behavior or other malicious or suspicious activity. Adversaries will likely need to learn about an environment and the relationships between systems through techniques prior to attempting [[Lateral Movement]].

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Windows 10, Linux, MacOS, OS X

Data Sources: Authentication logs

Table 639. Table References

Links

https://attack.mitre.org/wiki/Technique/T1021

Accessibility Features

Windows contains accessibility features that may be launched with a key combination before a user has logged in (for example, when the user is on the Windows logon screen). An adversary can modify the way these programs are launched to get a command prompt or backdoor without logging in to the system.

Two common accessibility programs are <code>C:\Windows\System32\sethc.exe</code>, launched when the shift key is pressed five times and <code>C:\Windows\System32\utilman.exe</code>, launched when the Windows + U key combination is pressed. The sethc.exe program is often referred to as "sticky keys", and has been used by adversaries for unauthenticated access through a remote desktop login screen.Remote Desktop Protocol will cause the replaced file to be executed with SYSTEM privileges.[[Citation: Tilbury 2014]]

For the debugger method on Windows Vista and later as well as Windows Server 2008 and later, for example, a Registry key may be modified that configures "cmd.exe," or another program that provides backdoor access, as a "debugger" for the accessibility program (e.g., "utilman.exe"). After the Registry is modified, pressing the appropriate key combination at the login screen while at the keyboard or when connected with RDP will cause the "debugger" program to be executed with SYSTEM privileges.[[Citation: Tilbury 2014]]

Other accessibility features exist that may also be leveraged in a similar fashion:[[Citation: DEFCON2016 Sticky Keys]]

*On-Screen Keyboard: <code>C:\Windows\System32\osk.exe</code> *Magnifier: <code>C:\Windows\System32\Magnify.exe</code> *Narrator: <code>C:\Windows\System32\Narrator.exe</code> *Display Switcher: <code>C:\Windows\System32\DisplaySwitch.exe</code> *App Switcher: <code>C:\Windows\System32\AtBroker.exe</code>

Detection: Changes to accessibility utility binaries or binary paths that do not correlate with known software, patch cycles, etc., are suspicious. Command line invocation of tools capable of modifying the Registry for associated keys are also suspicious. Utility arguments and the binaries themselves should be monitored for changes. Monitor Registry keys within <code>HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Image File Execution Options</code>.

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Windows 10

Data Sources: Windows Registry, File monitoring, Process monitoring

Effective Permissions: SYSTEM

Contributors: Paul Speulstra, AECOM Global Security Operations Center

Table 640. Table References

Links

https://attack.mitre.org/wiki/Technique/T1015

http://blog.crowdstrike.com/registry-analysis-with-crowdresponse/

https://www.slideshare.net/DennisMaldonado5/sticky-keys-to-the-kingdom

https://www.fireeye.com/blog/threat-research/2012/08/hikit-rootkit-advanced-persistent-attack-techniques-part-1.html

Taint Shared Content

Content stored on network drives or in other shared locations may be tainted by adding malicious programs, scripts, or exploit code to otherwise valid files. Once a user opens the shared tainted content, the malicious portion can be executed to run the adversary’s code on a remote system. Adversaries may use tainted shared content to move laterally.

Detection: Processes that write or overwrite many files to a network shared directory may be suspicious. Monitor processes that are executed from removable media for malicious or abnormal activity such as network connections due to [[Command and Control]] and possible network techniques.

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Windows 10

Data Sources: File monitoring, Process monitoring

Table 641. Table References

Links

https://attack.mitre.org/wiki/Technique/T1080

External Remote Services

Remote services such as VPNs, Citrix, and other access mechanisms allow users to connect to internal enterprise network resources from external locations. There are often remote service gateways that manage connections and credential authentication for these services.

Adversaries may use remote services to access and persist within a network.Valid Accounts to use the service is often a requirement, which could be obtained through credential pharming or by obtaining the credentials from users after compromising the enterprise network. Access to remote services may be used as part of Redundant Access during an operation.

Detection: Follow best practices for detecting adversary use of Valid Accounts for authenticating to remote services. Collect authentication logs and analyze for unusual access patterns, windows of activity, and access outside of normal business hours.

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Windows 10

Data Sources: Authentication logs

Contributors: Daniel Oakley

Table 642. Table References

Links

https://attack.mitre.org/wiki/Technique/T1133

https://www.volexity.com/blog/2015/10/07/virtual-private-keylogging-cisco-web-vpns-leveraged-for-access-and-persistence/

Application Deployment Software

Adversaries may deploy malicious software to systems within a network using application deployment systems employed by enterprise administrators. The permissions required for this action vary by system configuration; local credentials may be sufficient with direct access to the deployment server, or specific domain credentials may be required. However, the system may require an administrative account to log in or to perform software deployment.

Access to a network-wide or enterprise-wide software deployment system enables an adversary to have remote code execution on all systems that are connected to such a system. The access may be used to laterally move to systems, gather information, or cause a specific effect, such as wiping the hard drives on all endpoints.

Detection: Monitor application deployments from a secondary system. Perform application deployment at regular times so that irregular deployment activity stands out. Monitor process activity that does not correlate to known good software. Monitor account login activity on the deployment system.

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Windows 10, Linux, MacOS, OS X

Data Sources: File monitoring, Process use of network, Process monitoring

Table 643. Table References

Links

https://attack.mitre.org/wiki/Technique/T1017

Automated Collection

Once established within a system or network, an adversary may use automated techniques for collecting internal data. Methods for performing this technique could include use of Scripting to search for and copy information fitting set criteria such as file type, location, or name at specific time intervals. This functionality could also be built into remote access tools.

This technique may incorporate use of other techniques such as File and Directory Discovery and Remote File Copy to identify and move files.

Detection: Depending on the method used, actions could include common file system commands and parameters on the command-line interface within batch files or scripts. A sequence of actions like this may be unusual, depending on the system and network environment. Automated collection may occur along with other techniques such as Data Staged. As such, file access monitoring that shows an unusual process performing sequential file opens and potentially copy actions to another location on the file system for many files at once may indicate automated collection behavior. Remote access tools with built-in features may interact directly with the Windows API to gather data. Data may also be acquired through Windows system management tools such as Windows Management Instrumentation and PowerShell.

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Windows 10, Linux, MacOS, OS X

Data Sources: File monitoring, Data loss prevention, Process command-line parameters

Table 644. Table References

Links

https://attack.mitre.org/wiki/Technique/T1119

Security Support Provider

Windows Security Support Provider (SSP) DLLs are loaded into the Local Security Authority (LSA) process at system start. Once loaded into the LSA, SSP DLLs have access to encrypted and plaintext passwords that are stored in Windows, such as any logged-on user’s Domain password or smart card PINs. The SSP configuration is stored in two Registry keys: <code>HKLM\SYSTEM\CurrentControlSet\Control\Lsa\Security Packages</code> and <code>HKLM\SYSTEM\CurrentControlSet\Control\Lsa\OSConfig\Security Packages</code>. An adversary may modify these Registry keys to add new SSPs, which will be loaded the next time the system boots, or when the AddSecurityPackage Windows API function is called. [[Citation: Graeber 2014]]

Detection: Monitor the Registry for changes to the SSP Registry keys. Monitor the LSA process for DLL loads. Windows 8.1 and Windows Server 2012 R2 may generate events when unsigned SSP DLLs try to load into the LSA by setting the Registry key <code>HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Image File Execution Options\LSASS.exe</code> with AuditLevel = 8.[[Citation: Graeber 2014]][[Citation: Microsoft Configure LSA]]

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Windows 10

Data Sources: DLL monitoring, Windows Registry, Loaded DLLs

Table 645. Table References

Links

https://attack.mitre.org/wiki/Technique/T1101

http://docplayer.net/20839173-Analysis-of-malicious-security-support-provider-dlls.html

https://technet.microsoft.com/en-us/library/dn408187.aspx

HISTCONTROL

The <code>HISTCONTROL</code> environment variable keeps track of what should be saved by the <code>history</code> command and eventually into the <code>~/.bash_history</code> file when a user logs out. This setting can be configured to ignore commands that start with a space by simply setting it to "ignorespace". <code>HISTCONTROL</code> can also be set to ignore duplicate commands by setting it to "ignoredups". In some Linux systems, this is set by default to "ignoreboth" which covers both of the previous examples. This means that “ ls” will not be saved, but “ls” would be saved by history. <code>HISTCONTROL</code> does not exist by default on macOS, but can be set by the user and will be respected. Adversaries can use this to operate without leaving traces by simply prepending a space to all of their terminal commands.

Detection: Correlating a user session with a distinct lack of new commands in their <code>.bash_history</code> can be a clue to suspicious behavior. Additionally, users checking or changing their <code>HISTCONTROL</code> environment variable is also suspicious.

Platforms: Linux, MacOS, OS X

Data Sources: Process Monitoring, Authentication logs, File monitoring, Environment variable

Table 646. Table References

Links

https://attack.mitre.org/wiki/Technique/T1148

Rundll32

The rundll32.exe program can be called to execute an arbitrary binary. Adversaries may take advantage of this functionality to proxy execution of code to avoid triggering security tools that may not monitor execution of the rundll32.exe process because of whitelists or false positives from Windows using rundll32.exe for normal operations.

Detection: Use process monitoring to monitor the execution and arguments of rundll32.exe. Compare recent invocations of rundll32.exe with prior history of known good arguments and loaded DLLs to determine anomalous and potentially adversarial activity. Command arguments used with the rundll32.exe invocation may also be useful in determining the origin and purpose of the DLL being loaded.

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Windows 10

Data Sources: File monitoring, Process monitoring, Process command-line parameters, Binary file metadata

Table 647. Table References

Links

https://attack.mitre.org/wiki/Technique/T1085

Network Sniffing

Network sniffing refers to using the network interface on a system to monitor or capture information sent over a wired or wireless connection.

User credentials may be sent over an insecure, unencrypted protocol that can be captured and obtained through network packet analysis. An adversary may place a network interface into promiscuous mode, using a utility to capture traffic in transit over the network or use span ports to capture a larger amount of data. In addition, Address Resolution Protocol (ARP) and Domain Name Service (DNS) poisoning can be used to capture credentials to websites, proxies, and internal systems by redirecting traffic to an adversary.

Detection: Detecting the events leading up to sniffing network traffic may be the best method of detection. From the host level, an adversary would likely need to perform a man-in-the-middle attack against other devices on a wired network in order to capture traffic that was not to or from the current compromised system. This change in the flow of information is detectable at the enclave network level. Monitor for ARP spoofing and gratuitous ARP broadcasts. Detecting compromised network devices is a bit more challenging. Auditing administrator logins, configuration changes, and device images is required to detect malicious changes.

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Windows 10, Linux, MacOS, OS X

Data Sources: Network device logs, Host network interface, Netflow/Enclave netflow

Table 648. Table References

Links

https://attack.mitre.org/wiki/Technique/T1040

Local Port Monitor

A port monitor can be set through the AddMonitor API call to set a DLL to be loaded at startup.[[Citation: AddMonitor]] This DLL can be located in <code>C:\Windows\System32</code> and will be loaded by the print spooler service, spoolsv.exe, on boot.[[Citation: Bloxham]] Alternatively, an arbitrary DLL can be loaded if permissions allow writing a fully-qualified pathname for that DLL to <code>HKLM\SYSTEM\CurrentControlSet\Control\Print\Monitors</code>.[[Citation: Bloxham]] The spoolsv.exe process also runs under SYSTEM level permissions.

Adversaries can use this technique to load malicious code at startup that will persist on system reboot and execute as SYSTEM.

Detection: * Monitor process API calls to AddMonitor. * Monitor DLLs that are loaded by spoolsv.exe for DLLs that are abnormal. * New DLLs written to the System32 directory that do not correlate with known good software or patching may be suspicious. * Monitor registry writes to <code>HKLM\SYSTEM\CurrentControlSet\Control\Print\Monitors</code>. * Run the Autoruns utility, which checks for this Registry key as a persistence mechanism[[Citation: TechNet Autoruns]]

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Windows 10

Data Sources: File monitoring, API monitoring, DLL monitoring, Windows Registry, Process monitoring

Effective Permissions: SYSTEM

Contributors: Stefan Kanthak

Table 649. Table References

Links

https://attack.mitre.org/wiki/Technique/T1013

https://technet.microsoft.com/en-us/sysinternals/bb963902

http://msdn.microsoft.com/en-us/library/dd183341

https://www.defcon.org/images/defcon-22/dc-22-presentations/Bloxham/DEFCON-22-Brady-Bloxham-Windows-API-Abuse-UPDATED.pdf

Source

The <code>source</code> command loads functions into the current shell or executes files in the current context. This built-in command can be run in two different ways <code>source /path/to/filename [arguments]</code> or <code>. /path/to/filename [arguments]</code>. Take note of the space after the ".". Without a space, a new shell is created that runs the program instead of running the program within the current context. This is often used to make certain features or functions available to a shell or to update a specific shell’s environment.

Adversaries can abuse this functionality to execute programs. The file executed with this technique does not need to be marked executable beforehand.

Detection: Monitor for command shell execution of source and subsequent processes that are started as a result of being executed by a source command. Adversaries must also drop a file to disk in order to execute it with source, and these files can also detected by file monitoring.

Platforms: Linux, MacOS, OS X

Data Sources: Process Monitoring, File monitoring, Process command-line parameters

Table 650. Table References

Links

https://attack.mitre.org/wiki/Technique/T1153

Software Packing

Software packing is a method of compressing or encrypting an executable. Packing an executable changes the file signature in an attempt to avoid signature-based detection. Most decompression techniques decompress the executable code in memory.

Utilities used to perform software packing are called packers. Example packers are MPRESS and UPX. A more comprehensive list of known packers is available,[[Citation: Wikipedia Exe Compression]] but adversaries may create their own packing techniques that do not leave the same artifacts as well-known packers to evade defenses.

Detection: Use file scanning to look for known software packers or artifacts of packing techniques. Packing is not a definitive indicator of malicious activity, because legitimate software may use packing techniques to reduce binary size or to protect proprietary code.

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Windows 10

Data Sources: Binary file metadata

Table 651. Table References

Links

https://attack.mitre.org/wiki/Technique/T1045

http://en.wikipedia.org/wiki/Executable%20compression

Application Window Discovery

Adversaries may attempt to get a listing of open application windows. Window listings could convey information about how the system is used or give context to information collected by a keylogger.

In Mac, this can be done natively with a small AppleScript script.

Detection: System and network discovery techniques normally occur throughout an operation as an adversary learns the environment. Data and events should not be viewed in isolation, but as part of a chain of behavior that could lead to other activities based on the information obtained.

Monitor processes and command-line arguments for actions that could be taken to gather system and network information. Remote access tools with built-in features may interact directly with the Windows API to gather information. Information may also be acquired through Windows system management tools such as Windows Management Instrumentation and PowerShell.

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Windows 10, MacOS, OS X

Data Sources: API monitoring, Process monitoring, Process command-line parameters

Table 652. Table References

Links

https://attack.mitre.org/wiki/Technique/T1010

Hypervisor

A type-1 hypervisor is a software layer that sits between the guest operating systems and system’s hardware.Rootkit functionality to hide its existence from the guest operating system.[[Citation: Myers 2007]] A malicious hypervisor of this nature could be used to persist on systems through interruption.

Detection: Type-1 hypervisors may be detected by performing timing analysis. Hypervisors emulate certain CPU instructions that would normally be executed by the hardware. If an instruction takes orders of magnitude longer to execute than normal on a system that should not contain a hypervisor, one may be present.[[Citation: virtualization.info 2006]]

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Windows 10

Data Sources: System calls

Table 653. Table References

Links

https://attack.mitre.org/wiki/Technique/T1062

https://en.wikipedia.org/wiki/Hypervisor

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.90.8832&rep=rep1&type=pdf

http://en.wikipedia.org/wiki/Xen

http://virtualization.info/en/news/2006/08/debunking-blue-pill-myth.html

Credential Dumping

Credential dumping is the process of obtaining account login and password information from the operating system and software. Credentials can be used to perform Windows Credential Editor, Mimikatz, and gsecdump. These tools are in use by both professional security testers and adversaries.

Plaintext passwords can be obtained using tools such as Mimikatz to extract passwords stored by the Local Security Authority (LSA). If smart cards are used to authenticate to a domain using a personal identification number (PIN), then that PIN is also cached as a result and may be dumped.Mimikatz access the LSA Subsystem Service (LSASS) process by opening the process, locating the LSA secrets key, and decrypting the sections in memory where credential details are stored. Credential dumpers may also use methods for reflective DLL Injection to reduce potential indicators of malicious activity.

NTLM hash dumpers open the Security Accounts Manager (SAM) on the local file system (%SystemRoot%/system32/config/SAM) or create a dump of the Registry SAM key to access stored account password hashes. Some hash dumpers will open the local file system as a device and parse to the SAM table to avoid file access defenses. Others will make an in-memory copy of the SAM table before reading hashes. Detection of compromised Valid Accounts in-use by adversaries may help as well.

On Windows 8.1 and Windows Server 2012 R2, monitor Windows Logs for LSASS.exe creation to verify that LSASS started as a protected process.

Monitor processes and command-line arguments for program execution that may be indicative of credential dumping. Remote access tools may contain built-in features or incorporate existing tools like Mimikatz. PowerShell scripts also exist that contain credential dumping functionality, such as PowerSploit’s Invoke-Mimikatz module,[[Citation: Powersploit]] which may require additional logging features to be configured in the operating system to collect necessary information for analysis.

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Windows 10

Data Sources: API monitoring, Process monitoring, PowerShell logs, Process command-line parameters

Table 654. Table References

Links

https://attack.mitre.org/wiki/Technique/T1003

https://github.com/gentilkiwi/mimikatz/wiki/module--sekurlsa[https://github.com/gentilkiwi/mimikatz/wiki/module--sekurlsa]

https://github.com/mattifestation/PowerSploit

Web Service

Adversaries may use an existing, legitimate external Web service as a means for relaying commands to a compromised system.

Popular websites and social media can act as a mechanism for command and control and give a significant amount of cover due to the likelihood that hosts within a network are already communicating with them prior to a compromise. Using common services, such as those offered by Google or Twitter, makes it easier for adversaries to hide in expected noise. Web service providers commonly use SSL/TLS encryption, giving adversaries an added level of protection.

Detection: Host data that can relate unknown or suspicious process activity using a network connection is important to supplement any existing indicators of compromise based on malware command and control signatures and infrastructure or the presence of strong encryption. Analyze network data for uncommon data flows (e.g., a client sending significantly more data than it receives from a server). Analyze packet contents to detect communications that do not follow the expected protocol behavior for the port that is being used.[[Citation: University of Birmingham C2]]

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Linux, Windows 10, MacOS, OS X

Data Sources: Host network interface, Netflow/Enclave netflow, Network protocol analysis, Packet capture

Table 655. Table References

Links

https://attack.mitre.org/wiki/Technique/T1102

https://arxiv.org/ftp/arxiv/papers/1408/1408.1136.pdf

Query Registry

Adversaries may interact with the Windows Registry to gather information about the system, configuration, and installed software.

The Registry contains a significant amount of information about the operating system, configuration, software, and security.Reg or through running malware that may interact with the Registry through an API. Command-line invocation of utilities used to query the Registry may be detected through process and command-line monitoring. Remote access tools with built-in features may interact directly with the Windows API to gather information. Information may also be acquired through Windows system management tools such as Windows Management Instrumentation and PowerShell.

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Windows 10

Data Sources: Windows Registry, Process monitoring, Process command-line parameters

Table 656. Table References

Links

https://attack.mitre.org/wiki/Technique/T1012

https://en.wikipedia.org/wiki/Windows%20Registry

Third-party Software

Third-party applications and software deployment systems may be in use in the network environment for administration purposes (e.g., SCCM, VNC, HBSS, Altiris, etc.). If an adversary gains access to these systems, then they may be able to execute code.

Adversaries may gain access to and use third-party application deployment systems installed within an enterprise network. Access to a network-wide or enterprise-wide software deployment system enables an adversary to have remote code execution on all systems that are connected to such a system. The access may be used to laterally move to systems, gather information, or cause a specific effect, such as wiping the hard drives on all endpoints.

The permissions required for this action vary by system configuration; local credentials may be sufficient with direct access to the deployment server, or specific domain credentials may be required. However, the system may require an administrative account to log in or to perform software deployment.

Detection: Detection methods will vary depending on the type of third-party software or system and how it is typically used.

The same investigation process can be applied here as with other potentially malicious activities where the distribution vector is initially unknown but the resulting activity follows a discernible pattern. Analyze the process execution trees, historical activities from the third-party application (such as what types of files are usually pushed), and the resulting activities or events from the file/binary/script pushed to systems.

Often these third-party applications will have logs of their own that can be collected and correlated with other data from the environment. Audit software deployment logs and look for suspicious or unauthorized activity. A system not typically used to push software to clients that suddenly is used for such a task outside of a known admin function may be suspicious.

Perform application deployment at regular times so that irregular deployment activity stands out. Monitor process activity that does not correlate to known good software. Monitor account login activity on the deployment system.

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Windows 10, Linux, MacOS, OS X

Data Sources: File monitoring, Third-party application logs, Windows Registry, Process monitoring, Process use of network, Binary file metadata

Table 657. Table References

Links

https://attack.mitre.org/wiki/Technique/T1072

Remote File Copy

Files may be copied from one system to another to stage adversary tools or other files over the course of an operation. Files may be copied from an external adversary-controlled system through the FTP. Files can also be copied over on Mac and Linux with native tools like scp, rsync, and sftp.

Adversaries may also copy files laterally between internal victim systems to support Windows Admin Shares or Remote Desktop Protocol.

Detection: Monitor for file creation and files transferred within a network over SMB. Unusual processes with external network connections creating files on-system may be suspicious. Use of utilities, such as FTP, that does not normally occur may also be suspicious.

Analyze network data for uncommon data flows (e.g., a client sending significantly more data than it receives from a server). Processes utilizing the network that do not normally have network communication or have never been seen before are suspicious. Analyze packet contents to detect communications that do not follow the expected protocol behavior for the port that is being used.[[Citation: University of Birmingham C2]]

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Windows 10, Linux, MacOS, OS X

Data Sources: File monitoring, Packet capture, Process use of network, Netflow/Enclave netflow, Network protocol analysis, Process monitoring

Table 658. Table References

Links

https://attack.mitre.org/wiki/Technique/T1105

https://arxiv.org/ftp/arxiv/papers/1408/1408.1136.pdf

File System Logical Offsets

Windows allows programs to have direct access to logical volumes. Programs with direct access may read and write files directly from the drive by analyzing file system data structures. This technique bypasses Windows file access controls as well as file system monitoring tools.PowerShell, additional logging of PowerShell scripts is recommended.

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Windows 10

Data Sources: API monitoring

Table 659. Table References

Links

https://attack.mitre.org/wiki/Technique/T1006

https://github.com/PowerShellMafia/PowerSploit/blob/master/Exfiltration/Invoke-NinjaCopy.ps1

http://www.codeproject.com/Articles/32169/FDump-Dumping-File-Sectors-Directly-from-Disk-usin

Shared Webroot

Adversaries may add malicious content to an internally accessible website through an open network file share that contains the website’s webroot or Web content directory and then browse to that content with a Web browser to cause the server to execute the malicious content. The malicious content will typically run under the context and permissions of the Web server process, often resulting in local system or administrative privileges, depending on how the Web server is configured.

This mechanism of shared access and remote execution could be used for lateral movement to the system running the Web server. For example, a Web server running PHP with an open network share could allow an adversary to upload a remote access tool and PHP script to execute the RAT on the system running the Web server when a specific page is visited.

Detection: Use file and process monitoring to detect when files are written to a Web server by a process that is not the normal Web server process or when files are written outside of normal administrative time periods. Use process monitoring to identify normal processes that run on the Web server and detect processes that are not typically executed.

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Windows 10

Data Sources: File monitoring, Process monitoring

Table 660. Table References

Links

https://attack.mitre.org/wiki/Technique/T1051

Indicator Blocking

An adversary may attempt to block indicators or events from leaving the host machine. In the case of network-based reporting of indicators, an adversary may block traffic associated with reporting to prevent central analysis. This may be accomplished by many means, such as stopping a local process or creating a host-based firewall rule to block traffic to a specific server.

Detection: Detect lack of reported activity from a host sensor. Different methods of blocking may cause different disruptions in reporting. Systems may suddenly stop reporting all data or only certain kinds of data.

Depending on the types of host information collected, an analyst may be able to detect the event that triggered a process to stop or connection to be blocked.

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Windows 10

Data Sources: Sensor health and status, Process monitoring, Process command-line parameters

Table 661. Table References

Links

https://attack.mitre.org/wiki/Technique/T1054

Input Prompt

When programs are executed that need additional privileges than are present in the current user context, it is common for the operating system to prompt the user for proper credentials to authorize the elevated privileges for the task. Adversaries can mimic this functionality to prompt users for credentials with a normal-looking prompt. This type of prompt can be accomplished with AppleScript:

<code>set thePassword to the text returned of (display dialog "AdobeUpdater needs permission to check for updates. Please authenticate." default answer "")</code> [[Citation: OSX Keydnap malware]]

Adversaries can prompt a user for a number of reasons that mimic normal usage, such as a fake installer requiring additional access or a fake malware removal suite.[[Citation: OSX Malware Exploits MacKeeper]]

Detection: This technique exploits users' tendencies to always supply credentials when prompted, which makes it very difficult to detect. Monitor process execution for unusual programs as well as AppleScript that could be used to prompt users for credentials.

Platforms: MacOS, OS X

Data Sources: User interface, Process Monitoring

Table 662. Table References

Links

https://attack.mitre.org/wiki/Technique/T1141

https://www.welivesecurity.com/2016/07/06/new-osxkeydnap-malware-hungry-credentials/

https://baesystemsai.blogspot.com/2015/06/new-mac-os-malware-exploits-mackeeper.html

Exfiltration Over Physical Medium

In certain circumstances, such as an air-gapped network compromise, exfiltration could occur via a physical medium or device introduced by a user. Such media could be an external hard drive, USB drive, cellular phone, MP3 player, or other removable storage and processing device. The physical medium or device could be used as the final exfiltration point or to hop between otherwise disconnected systems.

Detection: Monitor file access on removable media. Detect processes that execute when removable media are mounted.

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Linux, Windows 10, MacOS, OS X

Data Sources: Data loss prevention, File monitoring

Table 663. Table References

Links

https://attack.mitre.org/wiki/Technique/T1052

System Time Discovery

The system time is set and stored by the Windows Time Service within a domain to maintain time synchronization between systems and services in an enterprise network.Net on Windows by performing <code>net time \\hostname</code> to gather the system time on a remote system. The victim’s time zone may also be inferred from the current system time or gathered by using <code>w32tm /tz</code>.Scheduled Task[[Citation: RSA EU12 They’re Inside]], or to discover locality information based on time zone to assist in victim targeting.

Detection: Command-line interface monitoring may be useful to detect instances of net.exe or other command-line utilities being used to gather system time or time zone. Methods of detecting API use for gathering this information are likely less useful due to how often they may be used by legitimate software.

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Windows 10

Data Sources: Process monitoring, Process command-line parameters, API monitoring

Table 664. Table References

Links

https://attack.mitre.org/wiki/Technique/T1124

https://technet.microsoft.com/windows-server-docs/identity/ad-ds/get-started/windows-time-service/windows-time-service-tools-and-settings

https://msdn.microsoft.com/ms724961.aspx

https://www.rsaconference.com/writable/presentations/file%20upload/ht-209%20rivner%20schwartz.pdf

Execution through Module Load

The Windows module loader can be instructed to load DLLs from arbitrary local paths and arbitrary Universal Naming Convention (UNC) network paths. This functionality resides in NTDLL.dll and is part of the Windows Native API which is called from functions like CreateProcess(), LoadLibrary(), etc. of the Win32 API.[[Citation: Wikipedia Windows Library Files]]

The module loader can load DLLs:

*via specification of the (fully-qualified or relative) DLL pathname in the IMPORT directory;

*via EXPORT forwarded to another DLL, specified with (fully-qualified or relative) pathname (but without extension);

*via an NTFS junction or symlink program.exe.local with the fully-qualified or relative pathname of a directory containing the DLLs specified in the IMPORT directory or forwarded EXPORTs;

*via <code><file name="filename.extension" loadFrom="fully-qualified or relative pathname"></code> in an embedded or external "application manifest". The file name refers to an entry in the IMPORT directory or a forwarded EXPORT.

Adversaries can use this functionality as a way to execute arbitrary code on a system.

Detection: Monitoring DLL module loads may generate a significant amount of data and may not be directly useful for defense unless collected under specific circumstances, since benign use of Windows modules load functions are common and may be difficult to distinguish from malicious behavior. Legitimate software will likely only need to load routine, bundled DLL modules or Windows system DLLs such that deviation from known module loads may be suspicious. Limiting DLL module loads to <code>%SystemRoot%</code> and <code>%ProgramFiles%</code> directories will protect against module loads from unsafe paths.

Correlation of other events with behavior surrounding module loads using API monitoring and suspicious DLLs written to disk will provide additional context to an event that may assist in determining if it is due to malicious behavior.

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Windows 10

Data Sources: Process Monitoring, API monitoring, File monitoring, DLL monitoring

Contributors: Stefan Kanthak

Table 665. Table References

Links

https://attack.mitre.org/wiki/Technique/T1129

https://en.wikipedia.org/wiki/Microsoft%20Windows%20library%20files

Install Root Certificate

Root certificates are used in public key cryptography to identify a root certificate authority (CA). When a root certificate is installed, the system or application will trust certificates in the root’s chain of trust that have been signed by the root certificate.[[Citation: Wikipedia Root Certificate]] Certificates are commonly used for establishing secure TLS/SSL communications within a web browser. When a user attempts to browse a website that presents a certificate that is not trusted an error message will be displayed to warn the user of the security risk. Depending on the security settings, the browser may not allow the user to establish a connection to the website.

Installation of a root certificate on a compromised system would give an adversary a way to degrade the security of that system. Adversaries have used this technique to avoid security warnings prompting users when compromised systems connect over HTTPS to adversary controlled web servers that spoof legitimate websites in order to collect login credentials.[[Citation: Operation Emmental]]

Atypical root certificates have also been pre-installed on systems by the manufacturer or in the software supply chain and were used in conjunction with malware/adware to provide a man-in-the-middle capability for intercepting information transmitted over secure TLS/SSL communications.[[Citation: Kaspersky Superfish]]

Detection: A system’s root certificates are unlikely to change frequently. Monitor new certificates installed on a system that could be due to malicious activity. Check pre-installed certificates on new systems to ensure unnecessary or suspicious certificates are not present.

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Linux, Windows 10

Data Sources: SSL/TLS inspection, Digital Certificate Logs

Contributors: Itzik Kotler, SafeBreach

Table 666. Table References

Links

https://attack.mitre.org/wiki/Technique/T1130

https://en.wikipedia.org/wiki/Root%20certificate

http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/white-papers/wp-finding-holes-operation-emmental.pdf

https://usblog.kaspersky.com/superfish-adware-preinstalled-on-lenovo-laptops/5161/

Data Transfer Size Limits

An adversary may exfiltrate data in fixed size chunks instead of whole files or limit packet sizes below certain thresholds. This approach may be used to avoid triggering network data transfer threshold alerts.

Detection: Analyze network data for uncommon data flows (e.g., a client sending significantly more data than it receives from a server). If a process maintains a long connection during which it consistently sends fixed size data packets or a process opens connections and sends fixed sized data packets at regular intervals, it may be performing an aggregate data transfer. Processes utilizing the network that do not normally have network communication or have never been seen before are suspicious. Analyze packet contents to detect communications that do not follow the expected protocol behavior for the port that is being used.[[Citation: University of Birmingham C2]]

Platforms: Windows Server 2003, Windows Server 2008, Windows Server 2012, Windows XP, Windows 7, Windows 8, Windows Server 2003 R2, Windows Server 2008 R2, Windows Server 2012 R2, Windows Vista, Windows 8.1, Windows 10, Linux, MacOS, OS X

Data Sources: Packet capture, Netflow/Enclave netflow, Process use of network, Process monitoring

Table 667. Table References

Links

https://attack.mitre.org/wiki/Technique/T1030

https://arxiv.org/ftp/arxiv/papers/1408/1408.1136.pdf

Course of Action

ATT&CK Mitigation.

Course of Action is a cluster galaxy available in JSON format at https://github.com/MISP/misp-galaxy/blob/master/clusters/course of action.json[this location] The JSON format can be freely reused in your application or automatically enabled in MISP.
authors

MITRE

Login Item Mitigation

Restrict users from being able to create their own login items. Additionally, holding the shift key during login prevents apps from opening automatically[[CiteRef::Re-Open windows on Mac]].

Component Object Model Hijacking Mitigation

Direct mitigation of this technique may not be recommended for a particular environment since COM objects are a legitimate part of the operating system and installed software. Blocking COM object changes may have unforeseen side effects to legitimate functionality.

Instead, identify and block potentially malicious software that may execute, or be executed by, this technique using whitelisting[[CiteRef::Beechey 2010]] tools, like AppLocker,[[CiteRef::Windows Commands JPCERT]][[CiteRef::NSA MS AppLocker]] or Software Restriction Policies[[CiteRef::Corio 2008]] where appropriate.[[CiteRef::TechNet Applocker vs SRP]]

Exfiltration Over Command and Control Channel Mitigation

Mitigations for command and control apply. Network intrusion detection and prevention systems that use network signatures to identify traffic for specific adversary malware can be used to mitigate activity at the network level. Signatures are often for unique indicators within protocols and may be based on the specific obfuscation technique used by a particular adversary or tool, and will likely be different across various malware families and versions. Adversaries will likely change tool command and control signatures over time or construct protocols in such a way to avoid detection by common defensive tools.[[CiteRef::University of Birmingham C2]]

.bash_profile and .bashrc Mitigation

Making these files immutable and only changeable by certain administrators will limit the ability for adversaries to easily create user level persistence.

DLL Injection Mitigation

Mitigating specific API calls will likely have unintended side effects, such as preventing legitimate software from operating properly. Efforts should be focused on preventing adversary tools from running earlier in the chain of activity and on identification of subsequent malicious behavior.

Identify or block potentially malicious software that may contain DLL injection functionality by using whitelisting[[CiteRef::Beechey 2010]] tools, like AppLocker,[[CiteRef::Windows Commands JPCERT]][[CiteRef::NSA MS AppLocker]] or Software Restriction Policies[[CiteRef::Corio 2008]] where appropriate.[[CiteRef::TechNet Applocker vs SRP]]

Bypass User Account Control Mitigation

Remove users from the local administrator group on systems. Although UAC bypass techniques exist, it is still prudent to use the highest enforcement level for UAC when possible and mitigate bypass opportunities that exist with techniques such as [[Technique/T1038|DLL Search Order Hijacking]].

Check for common UAC bypass weaknesses on Windows systems to be aware of the risk posture and address issues where appropriate.[[CiteRef::Github UACMe]]

Command-Line Interface Mitigation

Audit and/or block command-line interpreters by using whitelisting[[CiteRef::Beechey 2010]] tools, like AppLocker,[[CiteRef::Windows Commands JPCERT]][[CiteRef::NSA MS AppLocker]] or Software Restriction Policies[[CiteRef::Corio 2008]] where appropriate.[[CiteRef::TechNet Applocker vs SRP]]

DLL Search Order Hijacking Mitigation

Use auditing tools capable of detecting DLL search order hijacking opportunities on systems within an enterprise and correct them. Toolkits like the PowerSploit framework contain PowerUp modules that can be used to explore systems for DLL hijacking weaknesses.

Identify and block potentially malicious software that may be executed through search order hijacking by using whitelisting[[CiteRef::Beechey 2010]] tools like AppLocker[[CiteRef::Windows Commands JPCERT]][[CiteRef::NSA MS AppLocker]] that are capable of auditing and/or blocking unknown DLLs.

Uncommonly Used Port Mitigation

Properly configure firewalls and proxies to limit outgoing traffic to only necessary ports.

Network intrusion detection and prevention systems that use network signatures to identify traffic for specific adversary malware can be used to mitigate activity at the network level. Signatures are often for unique indicators within protocols and may be based on the specific protocol used by a particular adversary or tool, and will likely be different across various malware families and versions. Adversaries will likely change tool C2 signatures over time or construct protocols in such a way as to avoid detection by common defensive tools.[[CiteRef::University of Birmingham C2]]

Regsvcs/Regasm Mitigation

Regsvcs and Regasm may not be necessary within a given environment. Block execution of Regsvcs.exe and Regasm.exe if they are not required for a given system or network to prevent potential misuess by adversaries.

Application Deployment Software Mitigation

Grant access to application deployment systems only to a limited number of authorized administrators. Ensure proper system and access isolation for critical network systems through use of firewalls, account privilege separation, group policy, and multifactor authentication. Verify that account credentials that may be used to access deployment systems are unique and not used throughout the enterprise network. Patch deployment systems regularly to prevent potential remote access through [[Technique/T1068|Exploitation of Vulnerability]].

If the application deployment system can be configured to deploy only signed binaries, then ensure that the trusted signing certificates are not co-located with the application deployment system and are instead located on a system that cannot be accessed remotely or to which remote access is tightly controlled.

Commonly Used Port Mitigation

Network intrusion detection and prevention systems that use network signatures to identify traffic for specific adversary malware can be used to mitigate activity at the network level. Signatures are often for unique indicators within protocols and may be based on the specific protocol used by a particular adversary or tool, and will likely be different across various malware families and versions. Adversaries will likely change tool C2 signatures over time or construct protocols in such a way as to avoid detection by common defensive tools.[[CiteRef::University of Birmingham C2]]

Windows Management Instrumentation Mitigation

Disabling WMI or RPCS may cause system instability and should be evaluated to assess the impact to a network. By default, only administrators are allowed to connect remotely using WMI. Restrict other users who are allowed to connect, or disallow all users to connect remotely to WMI. Prevent credential overlap across systems of administrator and privileged accounts.[[CiteRef::FireEye WMI 2015]]

Path Interception Mitigation

Eliminate path interception weaknesses in program configuration files, scripts, the PATH environment variable, services, and in shortcuts by surrounding PATH variables with quotation marks when functions allow for them[[CiteRef::Microsoft CreateProcess]]. Be aware of the search order Windows uses for executing or loading binaries and use fully qualified paths wherever appropriate[[CiteRef::MSDN DLL Security]]. Clean up old Windows Registry keys when software is uninstalled to avoid keys with no associated legitimate binaries.

Periodically search for and correct or report path interception weaknesses on systems that may have been introduced using custom or available tools that report software using insecure path configurations[[CiteRef::Kanthak Sentinel]].

Require that all executables be placed in write-protected directories. Ensure that proper permissions and directory access control are set to deny users the ability to write files to the top-level directory <code>C:</code> and system directories, such as <code>C:\Windows\</code>, to reduce places where malicious files could be placed for execution.

Identify and block potentially malicious software that may be executed through the path interception by using whitelisting[[CiteRef::Beechey 2010]] tools, like AppLocker[[CiteRef::Windows Commands JPCERT]][[CiteRef::NSA MS AppLocker]] or Software Restriction Policies,[[CiteRef::Corio 2008]] that are capable of auditing and/or blocking unknown executables.

Graphical User Interface Mitigation

Prevent adversaries from gaining access to credentials through [[Credential Access]] that can be used to log into remote desktop sessions on systems.

Identify unnecessary system utilities, third-party tools, or potentially malicious software that may be used to log into remote interactive sessions, and audit and/or block them by using whitelisting[[CiteRef::Beechey 2010]] tools, like AppLocker[[CiteRef::Windows Commands JPCERT]][[CiteRef::NSA MS AppLocker]] and Software Restriction Policies[[CiteRef::Corio 2008]] where appropriate.[[CiteRef::TechNet Applocker vs SRP]]

NTFS Extended Attributes Mitigation

It may be difficult or inadvisable to block access to EA. Efforts should be focused on preventing potentially malicious software from running. Identify and block potentially malicious software that may contain functionality to hide information in EA by using whitelisting[[CiteRef::Beechey 2010]] tools like AppLocker[[CiteRef::Windows Commands JPCERT]][[CiteRef::NSA MS AppLocker]] or Software Restriction Policies[[CiteRef::Corio 2008]] where appropriate.[[CiteRef::TechNet Applocker vs SRP]]

Indicator Removal from Tools Mitigation

Mitigation is difficult in instances like this because the adversary may have access to the system through another channel and can learn what techniques or tools are blocked by resident defenses. Exercising best practices with configuration and security as well as ensuring that proper process is followed during investigation of potential compromise is essential to detecting a larger intrusion through discrete alerts.

Identify and block potentially malicious software that may be used by an adversary by using whitelisting[[CiteRef::Beechey 2010]] tools like AppLocker[[CiteRef::Windows Commands JPCERT]][[CiteRef::NSA MS AppLocker]] or Software Restriction Policies[[CiteRef::Corio 2008]] where appropriate.[[CiteRef::TechNet Applocker vs SRP]]

Clipboard Data Mitigation

Instead of blocking software based on clipboard capture behavior, identify potentially malicious software that may contain this functionality, and audit and/or block it by using whitelisting[[CiteRef::Beechey 2010]] tools, like AppLocker,[[CiteRef::Windows Commands JPCERT]][[CiteRef::NSA MS AppLocker]] or Software Restriction Policies[[CiteRef::Corio 2008]] where appropriate.[[CiteRef::TechNet Applocker vs SRP]]

Registry Run Keys / Start Folder Mitigation

Identify and block potentially malicious software that may be executed through run key or startup folder persistence using whitelisting[[CiteRef::Beechey 2010]] tools like AppLocker[[CiteRef::Windows Commands JPCERT]][[CiteRef::NSA MS AppLocker]] or Software Restriction Policies[[CiteRef::Corio 2008]] where appropriate.[[CiteRef::TechNet Applocker vs SRP]]

Multi-Stage Channels Mitigation

Command and control infrastructure used in a multi-stage channel may be blocked if known ahead of time. If unique signatures are present in the C2 traffic, they could also be used as the basis of identifying and blocking the channel.[[CiteRef::University of Birmingham C2]]

Hidden Users Mitigation

If the computer is domain joined, then group policy can help restrict the ability to create or hide users. Similarly, preventing the modification of the <code>/Library/Preferences/com.apple.loginwindow</code> <code>Hide500Users</code> value will force all users to be visible.

Data Staged Mitigation

Identify unnecessary system utilities or potentially malicious software that may be used to collect data from removable media, and audit and/or block them by using whitelisting[[CiteRef::Beechey 2010]] tools, like AppLocker,[[CiteRef::Windows Commands JPCERT]][[CiteRef::NSA MS AppLocker]] or Software Restriction Policies[[CiteRef::Corio 2008]] where appropriate.[[CiteRef::TechNet Applocker vs SRP]]

Data from Removable Media Mitigation

Identify unnecessary system utilities or potentially malicious software that may be used to collect data from removable media, and audit and/or block them by using whitelisting[[CiteRef::Beechey 2010]] tools, like AppLocker,[[CiteRef::Windows Commands JPCERT]][[CiteRef::NSA MS AppLocker]] or Software Restriction Policies[[CiteRef::Corio 2008]] where appropriate.[[CiteRef::TechNet Applocker vs SRP]]

Data from Network Shared Drive Mitigation

Identify unnecessary system utilities or potentially malicious software that may be used to collect data from a network share, and audit and/or block them by using whitelisting[[CiteRef::Beechey 2010]] tools, like AppLocker,[[CiteRef::Windows Commands JPCERT]][[CiteRef::NSA MS AppLocker]] or Software Restriction Policies[[CiteRef::Corio 2008]] where appropriate.[[CiteRef::TechNet Applocker vs SRP]]

Account Manipulation Mitigation

Use multifactor authentication. Follow guidelines to prevent or limit adversary access to [[Technique/T1078|Valid Accounts]].

Protect domain controllers by ensuring proper security configuration for critical servers. Configure access controls and firewalls to limit access to these systems. Do not allow domain administrator accounts to be used for day-to-day operations that may expose them to potential adversaries on unprivileged systems.

AppleScript Mitigation

Require that all AppleScript be signed by a trusted developer ID before being executed - this will prevent random AppleScript code from executing.

PowerShell Mitigation

It may be possible to remove PowerShell from systems when not needed, but a review should be performed to assess the impact to an environment, since it could be in use for many legitimate purposes and administrative functions. When PowerShell is necessary, restrict PowerShell execution policy to administrators and to only execute signed scripts. Be aware that there are methods of bypassing the PowerShell execution policy, depending on environment configuration.[[CiteRef::Netspi PowerShell Execution Policy Bypass]] Disable/restrict the WinRM Service to help prevent uses of PowerShell for remote execution.

Input Prompt Mitigation

Users need to be trained to know which programs ask for permission and why. Follow mitigation recommendations for [[Technique/T1155|AppleScript]].

System Information Discovery Mitigation

Identify unnecessary system utilities or potentially malicious software that may be used to acquire information about the operating system and underlying hardware, and audit and/or block them by using whitelisting[[CiteRef::Beechey 2010]] tools, like AppLocker,[[CiteRef::Windows Commands JPCERT]][[CiteRef::NSA MS AppLocker]] or Software Restriction Policies[[CiteRef::Corio 2008]] where appropriate.[[CiteRef::TechNet Applocker vs SRP]]

Winlogon Helper DLL Mitigation

Upgrade the operating system to a newer version of Windows if using a version prior to Vista.

Limit the privileges of user accounts so that only authorized administrators can perform Winlogon helper changes.

Identify and block potentially malicious software that may be executed through the Winlogon helper process by using whitelisting[[CiteRef::Beechey 2010]] tools like AppLocker[[CiteRef::Windows Commands JPCERT]][[CiteRef::NSA MS AppLocker]] that are capable of auditing and/or blocking unknown DLLs.

Netsh Helper DLL Mitigation

Identify and block potentially malicious software that may persist in this manner by using whitelisting[[CiteRef::Beechey 2010]] tools capable of monitoring DLL loads by Windows utilities like AppLocker.[[CiteRef::Windows Commands JPCERT]][[CiteRef::NSA MS AppLocker]]

Network Share Connection Removal Mitigation

Follow best practices for mitigation of activity related to establishing [[Technique/T1077|Windows Admin Shares]].

Identify unnecessary system utilities or potentially malicious software that may be used to leverage network shares, and audit and/or block them by using whitelisting[[CiteRef::Beechey 2010]] tools, like AppLocker,[[CiteRef::Windows Commands JPCERT]][[CiteRef::NSA MS AppLocker]] or Software Restriction Policies[[CiteRef::Corio 2008]] where appropriate.[[CiteRef::TechNet Applocker vs SRP]]

Connection Proxy Mitigation

Network intrusion detection and prevention systems that use network signatures to identify traffic for specific adversary malware can be used to mitigate activity at the network level. Signatures are often for unique indicators within protocols and may be based on the specific C2 protocol used by a particular adversary or tool, and will likely be different across various malware families and versions. Adversaries will likely change tool C2 signatures over time or construct protocols in such a way as to avoid detection by common defensive tools.[[CiteRef::University of Birmingham C2]]

Hidden Files and Directories Mitigation

Mitigation of this technique may be difficult and unadvised due to the the legitimate use of hidden files and directories.

Office Application Startup Mitigation

Follow Office macro security best practices suitable for your environment. Disable Office VBA macros from executing. Even setting to disable with notification could enable unsuspecting users to execute potentially malicious macros.[[CiteRef::TechNet Office Macro Security]]

For the Office Test method, create the Registry key used to execute it and set the permissions to "Read Control" to prevent easy access to the key without administrator permissions or requiring [[Privilege Escalation]].[[CiteRef::Palo Alto Office Test Sofacy]]

Disable Office add-ins. If they are required, follow best practices for securing them by requiring them to be signed and disabling user notification for allowing add-ins. For some add-ins types (WLL, VBA) additional mitigation is likely required as disabling add-ins in the Office Trust Center does not disable WLL nor does it prevent VBA code from executing.[[CiteRef::MRWLabs Office Persistence Add-ins]]

Bash History Mitigation

There are multiple methods of preventing a user’s command history from being flushed to their .bash_history file, including use of the following commands: <code>set +o history</code> and <code>set -o history</code> to start logging again; <code>unset HISTFILE</code> being added to a user’s .bash_rc file; and <code>ln -s /dev/null ~/.bash_history</code> to write commands to <code>/dev/null</code>instead.

Application Window Discovery Mitigation

Identify unnecessary system utilities or potentially malicious software that may be used to acquire information, and audit and/or block them by using whitelisting[[CiteRef::Beechey 2010]] tools, like AppLocker,[[CiteRef::Windows Commands JPCERT]][[CiteRef::NSA MS AppLocker]] or Software Restriction Policies[[CiteRef::Corio 2008]] where appropriate.[[CiteRef::TechNet Applocker vs SRP]]

Private Keys Mitigation

Use strong passphrases for private keys to make cracking difficult. When possible, store keys on separate cryptographic hardware instead of on the local system. Ensure only authorized keys are allowed access to critical resources and audit access lists regularly. Ensure permissions are properly set on folders containing sensitive private keys to prevent unintended access. Use separate infrastructure for managing critical systems to prevent overlap of credentials and permissions on systems that could be used as vectors for lateral movement. Follow other best practices for mitigating access through use of [[Technique/T1078|Valid Accounts]].

Source Mitigation

Due to potential legitimate uses of source commands, it’s may be difficult to mitigate use of this technique.

HISTCONTROL Mitigation

Prevent users from changing the <code>HISTCONTROL</code> environment variable[[CiteRef::Securing bash history]]. Also, make sure that the <code>HISTCONTROL</code> environment variable is set to “ignoredup” instead of “ignoreboth” or “ignorespace”.

External Remote Services Mitigation

Limit access to remote services through centrally managed concentrators such as VPNs and other managed remote access systems. Deny direct remote access to internal systems through uses of network proxies, gateways, and firewalls as appropriate. Use strong two-factor or multi-factor authentication for remote service accounts to mitigate an adversary’s ability to leverage stolen credentials, but be aware of [[Technique/T1111|Two-Factor Authentication Interception]] techniques for some two-factor authentication implementations.

LC_MAIN Hijacking Mitigation

Enforce valid digital signatures for signed code on all applications and only trust applications with signatures from trusted parties.

Pass the Hash Mitigation

Monitor systems and domain logs for unusual credential logon activity. Prevent access to [[Technique/T1078|Valid Accounts]]. Apply patch KB2871997 to Windows 7 and higher systems to limit the default access of accounts in the local administrator group. Limit credential overlap across systems to prevent the damage of credential compromise and reduce the adversary’s ability to perform [[Lateral Movement]] between systems. Ensure that built-in and created local administrator accounts have complex, unique passwords. Do not allow a domain user to be in the local administrator group on multiple systems.

Account Discovery Mitigation

Identify unnecessary system utilities or potentially malicious software that may be used to acquire information about system and domain accounts, and audit and/or block them by using whitelisting[[CiteRef::Beechey 2010]] tools, like AppLocker,[[CiteRef::Windows Commands JPCERT]][[CiteRef::NSA MS AppLocker]] or Software Restriction Policies[[CiteRef::Corio 2008]] where appropriate.[[CiteRef::TechNet Applocker vs SRP]]

Trap Mitigation

Due to potential legitimate uses of trap commands, it’s may be difficult to mitigate use of this technique.

Trusted Developer Utilities Mitigation

MSBuild.exe, dnx.exe, rcsi.exe, WinDbg.exe, and cdb.exe may not be necessary within a given environment and should be removed if not used.

Use application whitelisting configured to block execution of MSBuild.exe, dnx.exe, rcsi.exe, WinDbg.exe, and cdb.exe if they are not required for a given system or network to prevent potential misuse by adversaries.[[CiteRef::Microsoft GitHub Device Guard CI Policies]][[CiteRef::Exploit Monday Mitigate Device Guard Bypases]][[CiteRef::GitHub mattifestation DeviceGuardBypass]][[CiteRef::SubTee MSBuild]]

Pass the Ticket Mitigation

Monitor domains for unusual credential logons. Limit credential overlap across systems to prevent the damage of credential compromise. Ensure that local administrator accounts have complex, unique passwords. Do not allow a user to be a local administrator for multiple systems. Limit domain admin account permissions to domain controllers and limited servers. Delegate other admin functions to separate accounts.[[CiteRef::ADSecurity AD Kerberos Attacks]]

For containing the impact of a previously generated golden ticket, reset the built-in KRBTGT account password twice, which will invalidate any existing golden tickets that have been created with the KRBTGT hash and other Kerberos tickets derived from it.[[CiteRef::CERT-EU Golden Ticket Protection]]

Attempt to identify and block unknown or malicious software that could be used to obtain Kerberos tickets and use them to authenticate by using whitelisting[[CiteRef::Beechey 2010]] tools, like AppLocker,[[CiteRef::Windows Commands JPCERT]][[CiteRef::NSA MS AppLocker]] or Software Restriction Policies[[CiteRef::Corio 2008]] where appropriate.[[CiteRef::TechNet Applocker vs SRP]]

System Owner/User Discovery Mitigation

Identify unnecessary system utilities or potentially malicious software that may be used to acquire information about system users, and audit and/or block them by using whitelisting[[CiteRef::Beechey 2010]] tools, like AppLocker,[[CiteRef::Windows Commands JPCERT]][[CiteRef::NSA MS AppLocker]] or Software Restriction Policies[[CiteRef::Corio 2008]] where appropriate.[[CiteRef::TechNet Applocker vs SRP]]

Credential Dumping Mitigation

Monitor/harden access to LSASS and SAM table with tools that allow process whitelisting. Limit credential overlap across systems to prevent lateral movement opportunities using [[Technique/T1078|Valid Accounts]] if passwords and hashes are obtained. Ensure that local administrator accounts have complex, unique passwords across all systems on the network. Do not put user or admin domain accounts in the local administrator groups across systems unless they are tightly controlled, as this is often equivalent to having a local administrator account with the same password on all systems. On Windows 8.1 and Windows Server 2012 R2, enable Protected Process Light for LSA.[[CiteRef::Microsoft LSA]]

Identify and block potentially malicious software that may be used to dump credentials by using whitelisting[[CiteRef::Beechey 2010]] tools, like AppLocker,[[CiteRef::Windows Commands JPCERT]][[CiteRef::NSA MS AppLocker]] or Software Restriction Policies[[CiteRef::Corio 2008]] where appropriate.[[CiteRef::TechNet Applocker vs SRP]]

With Windows 10, Microsoft implemented new protections called Credential Guard to protect the LSA secrets that can be used to obtain credentials through forms of credential dumping. It is not configured by default and has hardware and firmware system requirements.[[CiteRef::TechNet Credential Guard]] It also does not protect against all forms of credential dumping.[[CiteRef::GitHub SHB Credential Guard]]

Regsvr32 Mitigation

Microsoft’s Enhanced Mitigation Experience Toolkit (EMET) Attack Surface Reduction (ASR) feature can be used to block regsvr32.exe from being used to bypass whitelisting.[[CiteRef::Secure Host Baseline EMET]]

Process Hollowing Mitigation

Mitigating specific API calls will likely have unintended side effects, such as preventing legitimate software from operating properly. Efforts should be focused on preventing adversary tools from running earlier in the chain of activity and on identifying subsequent malicious behavior.

Although process hollowing may be used to evade certain types of defenses, it is still good practice to identify potentially malicious software that may be used to perform adversarial actions, including process hollowing, and audit and/or block it by using whitelisting[[CiteRef::Beechey 2010]] tools, like AppLocker,[[CiteRef::Windows Commands JPCERT]][[CiteRef::NSA MS AppLocker]] or Software Restriction Policies[[CiteRef::Corio 2008]] where appropriate.[[CiteRef::TechNet Applocker vs SRP]]

Sudo Mitigation

The sudoers file should be strictly edited such that passwords are always required and that users can’t spawn risky processes as users with higher privilege. By requiring a password, even if an adversary can get terminal access, they must know the password to run anything in the sudoers file.

Rc.common Mitigation

Limit privileges of user accounts so only authorized users can edit the rc.common file.

Execution through API Mitigation

Mitigating specific API calls will likely have unintended side effects, such as preventing legitimate software from operating properly. Efforts should be focused on preventing adversary tools from running earlier in the chain of activity and on identifying subsequent malicious behavior. Audit and/or block potentially malicious software by using whitelisting[[CiteRef::Beechey 2010]] tools, like AppLocker,[[CiteRef::Windows Commands JPCERT]][[CiteRef::NSA MS AppLocker]] or Software Restriction Policies[[CiteRef::Corio 2008]] where appropriate.[[CiteRef::TechNet Applocker vs SRP]]

Taint Shared Content Mitigation

Protect shared folders by minimizing users who have write access. Use utilities that detect or mitigate common features used in exploitation, such as the Microsoft Enhanced Mitigation Experience Toolkit (EMET).

Identify potentially malicious software that may be used to taint content or may result from it and audit and/or block the unknown programs by using whitelisting[[CiteRef::Beechey 2010]] tools, like AppLocker,[[CiteRef::Windows Commands JPCERT]][[CiteRef::NSA MS AppLocker]] or Software Restriction Policies[[CiteRef::Corio 2008]] where appropriate.[[CiteRef::TechNet Applocker vs SRP]]

Redundant Access Mitigation

Identify and block potentially malicious software that may be used as a remote access tool, and audit and/or block it by using whitelisting[[CiteRef::Beechey 2010]] tools, like AppLocker,[[CiteRef::Windows Commands JPCERT]][[CiteRef::NSA MS AppLocker]] or Software Restriction Policies[[CiteRef::Corio 2008]] where appropriate.[[CiteRef::TechNet Applocker vs SRP]]

Network intrusion detection and prevention systems that use network signatures to identify traffic for specific adversary malware can be used to mitigate activity at the network level. Signatures are often for unique indicators within protocols and will be different across various malware families and versions. Adversaries will likely change tool signatures over time or construct protocols in such a way as to avoid detection by common defensive tools.[[CiteRef::University of Birmingham C2]]

Audio Capture Mitigation

Mitigating this technique specifically may be difficult as it requires fine-grained API control. Efforts should be focused on preventing unwanted or unknown code from executing on a system.

Identify and block potentially malicious software that may be used to record audio by using whitelisting[[CiteRef::Beechey 2010]] tools, like AppLocker,[[CiteRef::Windows Commands JPCERT]][[CiteRef::NSA MS AppLocker]] or Software Restriction Policies[[CiteRef::Corio 2008]] where appropriate.[[CiteRef::TechNet Applocker vs SRP]]

New Service Mitigation

Limit privileges of user accounts and remediate [[Privilege Escalation]] vectors so only authorized administrators can create new services.

Identify and block unnecessary system utilities or potentially malicious software that may be used to create services by using whitelisting[[CiteRef::Beechey 2010]] tools, like AppLocker,[[CiteRef::Windows Commands JPCERT]][[CiteRef::NSA MS AppLocker]] or Software Restriction Policies[[CiteRef::Corio 2008]] where appropriate.[[CiteRef::TechNet Applocker vs SRP]]

Scripting Mitigation

Turn off unused features or restrict access to scripting engines such as VBScript or scriptable administration frameworks such as PowerShell.

Rundll32 Mitigation

Microsoft’s Enhanced Mitigation Experience Toolkit (EMET) Attack Surface Reduction (ASR) feature can be used to block methods of using rundll32.exe to bypass whitelisting.[[CiteRef::Secure Host Baseline EMET]]

Fallback Channels Mitigation

Network intrusion detection and prevention systems that use network signatures to identify traffic for specific adversary malware can be used to mitigate activity at the network level. Signatures are often for unique indicators within protocols and may be based on the specific protocol used by a particular adversary or tool, and will likely be different across various malware families and versions. Adversaries will likely change tool C2 signatures over time or construct protocols in such a way as to avoid detection by common defensive tools.[[CiteRef::University of Birmingham C2]]

Hidden Window Mitigation

Whitelist programs that are allowed to have this plist tag. All other programs should be considered suspicious.

System Service Discovery Mitigation

Identify unnecessary system utilities or potentially malicious software that may be used to acquire information about services, and audit and/or block them by using whitelisting[[CiteRef::Beechey 2010]] tools, like AppLocker,[[CiteRef::Windows Commands JPCERT]][[CiteRef::NSA MS AppLocker]] or Software Restriction Policies[[CiteRef::Corio 2008]] where appropriate.[[CiteRef::TechNet Applocker vs SRP]]

Indicator Removal on Host Mitigation

Automatically forward events to a log server or data repository to prevent conditions in which the adversary can locate and manipulate data on the local system. When possible, minimize time delay on event reporting to avoid prolonged storage on the local system. Protect generated event files that are stored locally with proper permissions and authentication. Obfuscate/encrypt event files locally and in transit to avoid giving feedback to an adversary.

Service Registry Permissions Weakness Mitigation

Identify and block potentially malicious software that may be executed through service abuse by using whitelisting[[CiteRef::Beechey 2010]] tools like AppLocker[[CiteRef::Windows Commands JPCERT]][[CiteRef::NSA MS AppLocker]] that are capable of auditing and/or blocking unknown programs.

Timestomp Mitigation

Mitigation of timestomping specifically is likely difficult. Efforts should be focused on preventing potentially malicious software from running. Identify and block potentially malicious software that may contain functionality to perform timestomping by using whitelisting[[CiteRef::Beechey 2010]] tools like AppLocker[[CiteRef::Windows Commands JPCERT]][[CiteRef::NSA MS AppLocker]] or Software Restriction Policies[[CiteRef::Corio 2008]] where appropriate.[[CiteRef::TechNet Applocker vs SRP]]

System Network Configuration Discovery Mitigation

Identify unnecessary system utilities or potentially malicious software that may be used to acquire information about a system’s network configuration, and audit and/or block them by using whitelisting[[CiteRef::Beechey 2010]] tools, like AppLocker,[[CiteRef::Windows Commands JPCERT]][[CiteRef::NSA MS AppLocker]] or Software Restriction Policies[[CiteRef::Corio 2008]] where appropriate.[[CiteRef::TechNet Applocker vs SRP]]

Execution through Module Load Mitigation

Directly mitigating module loads and API calls related to module loads will likely have unintended side effects, such as preventing legitimate software from operating properly. Efforts should be focused on preventing adversary tools from running earlier in the chain of activity and on identifying and correlated subsequent behavior to determine if it is the result of malicious activity.

Shared Webroot Mitigation

Networks that allow for open development and testing of Web content and allow users to set up their own Web servers on the enterprise network may be particularly vulnerable if the systems and Web servers are not properly secured to limit privileged account use, unauthenticated network share access, and network/system isolation.

Ensure proper permissions on directories that are accessible through a Web server. Disallow remote access to the webroot or other directories used to serve Web content. Disable execution on directories within the webroot. Ensure that permissions of the Web server process are only what is required by not using built-in accounts; instead, create specific accounts to limit unnecessary access or permissions overlap across multiple systems.

Scheduled Task Mitigation

Limit privileges of user accounts and remediate [[Privilege Escalation]] vectors so only authorized administrators can create scheduled tasks. Toolkits like the PowerSploit framework contain PowerUp modules that can be used to explore systems for permission weaknesses in scheduled tasks that could be used to escalate privileges.

Identify and block unnecessary system utilities or potentially malicious software that may be used to schedule tasks using whitelisting[[CiteRef::Beechey 2010]] tools, like AppLocker,[[CiteRef::Windows Commands JPCERT]][[CiteRef::NSA MS AppLocker]] or Software Restriction Policies[[CiteRef::Corio 2008]] where appropriate.[[CiteRef::TechNet Applocker vs SRP]]

Binary Padding Mitigation

Identify potentially malicious software that may be executed from a padded or otherwise obfuscated binary, and audit and/or block it by using whitelisting[[CiteRef::Beechey 2010]] tools, like AppLocker,[[CiteRef::Windows Commands JPCERT]][[CiteRef::NSA MS AppLocker]] or Software Restriction Policies[[CiteRef::Corio 2008]] where appropriate.[[CiteRef::TechNet Applocker vs SRP]]

Network Sniffing Mitigation

Ensure that all wireless traffic is encrypted appropriately. Use Kerberos, SSL, and multifactor authentication wherever possible. Monitor switches and network for span port usage, ARP/DNS poisoning, and router reconfiguration.

Identify and block potentially malicious software that may be used to sniff or analyze network traffic by using whitelisting[[CiteRef::Beechey 2010]] tools, like AppLocker,[[CiteRef::Windows Commands JPCERT]][[CiteRef::NSA MS AppLocker]] or Software Restriction Policies[[CiteRef::Corio 2008]] where appropriate.[[CiteRef::TechNet Applocker vs SRP]]

Data Encrypted Mitigation

Identify unnecessary system utilities, third-party tools, or potentially malicious software that may be used to encrypt files, and audit and/or block them by using whitelisting[[CiteRef::Beechey 2010]] tools, like AppLocker,[[CiteRef::Windows Commands JPCERT]][[CiteRef::NSA MS AppLocker]] or Software Restriction Policies[[CiteRef::Corio 2008]] where appropriate.[[CiteRef::TechNet Applocker vs SRP]]

Standard Cryptographic Protocol Mitigation

Network intrusion detection and prevention systems that use network signatures to identify traffic for specific adversary malware can be used to mitigate activity at the network level. Use of encryption protocols may make typical network-based C2 detection more difficult due to a reduced ability to signature the traffic. Prior knowledge of adversary C2 infrastructure may be useful for domain and IP address blocking, but will likely not be an effective long-term solution because adversaries can change infrastructure often.[[CiteRef::University of Birmingham C2]]

Multilayer Encryption Mitigation

Network intrusion detection and prevention systems that use network signatures to identify traffic for specific adversary malware can be used to mitigate activity at the network level. Use of encryption protocols may make typical network-based C2 detection more difficult due to a reduced ability to signature the traffic. Prior knowledge of adversary C2 infrastructure may be useful for domain and IP address blocking, but will likely not be an effective long-term solution because adversaries can change infrastructure often.[[CiteRef::University of Birmingham C2]]

Masquerading Mitigation

When creating security rules, avoid exclusions based on file name or file path. Require signed binaries. Use file system access controls to protect folders such as C:\Windows\System32. Use tools that restrict program execution via whitelisting by attributes other than file name.

Identify potentially malicious software that may look like a legitimate program based on name and location, and audit and/or block it by using whitelisting[[CiteRef::Beechey 2010]] tools like AppLocker[[CiteRef::Windows Commands JPCERT]][[CiteRef::NSA MS AppLocker]] or Software Restriction Policies[[CiteRef::Corio 2008]] where appropriate.[[CiteRef::TechNet Applocker vs SRP]]

File System Logical Offsets Mitigation

Identify potentially malicious software that may be used to access logical drives in this manner, and audit and/or block it by using whitelisting[[CiteRef::Beechey 2010]] tools, like AppLocker,[[CiteRef::Windows Commands JPCERT]][[CiteRef::NSA MS AppLocker]] or Software Restriction Policies[[CiteRef::Corio 2008]] where appropriate.[[CiteRef::TechNet Applocker vs SRP]]

Launch Agent Mitigation

Restrict user’s abilities to create Launch Agents with group policy.

Remote Services Mitigation

Limit the number of accounts that may use remote services. Use multifactor authentication where possible. Limit the permissions for accounts that are at higher risk of compromise; for example, configure SSH so users can only run specific programs. Prevent [[Credential Access]] techniques that may allow an adversary to acquire [[Technique/T1078|Valid Accounts]] that can be used by existing services.

File Deletion Mitigation

Identify unnecessary system utilities, third-party tools, or potentially malicious software that may be used to delete files, and audit and/or block them by using whitelisting[[CiteRef::Beechey 2010]] tools like AppLocker[[CiteRef::Windows Commands JPCERT]][[CiteRef::NSA MS AppLocker]] or Software Restriction Policies[[CiteRef::Corio 2008]] where appropriate.[[CiteRef::TechNet Applocker vs SRP]]

Data Compressed Mitigation

Identify unnecessary system utilities, third-party tools, or potentially malicious software that may be used to compress files, and audit and/or block them by using whitelisting[[CiteRef::Beechey 2010]] tools, like AppLocker,[[CiteRef::Windows Commands JPCERT]][[CiteRef::NSA MS AppLocker]] or Software Restriction Policies[[CiteRef::Corio 2008]] where appropriate.[[CiteRef::TechNet Applocker vs SRP]]

If network intrusion prevention or data loss prevention tools are set to block specific file types from leaving the network over unencrypted channels, then an adversary may move to an encrypted channel.

LC_LOAD_DYLIB Addition Mitigation

Enforce that all binaries be signed by the correct Apple Developer IDs, and whitelist applications via known hashes. Binaries can also be baselined for what dynamic libraries they require, and if an app requires a new dynamic library that wasn’t included as part of an update, it should be investigated.

Authentication Package Mitigation

Windows 8.1, Windows Server 2012 R2, and later versions, may make LSA run as a Protected Process Light (PPL) by setting the Registry key <code>HKLM\SYSTEM\CurrentControlSet\Control\Lsa\RunAsPPL</code>, which requires all DLLs loaded by LSA to be signed by Microsoft.[[CiteRef::Graeber 2014]][[CiteRef::Microsoft Configure LSA]]

Startup Items Mitigation

Since StartupItems are deprecated, preventing all users from writing to the <code>/Library/StartupItems</code> directory would prevent any startup items from getting registered. Similarly, appropriate permissions should be applied such that only specific users can edit the startup items so that they can’t be leveraged for privilege escalation.

Launch Daemon Mitigation

Limit privileges of user accounts and remediate Privilege Escalation vectors so only authorized administrators can create new Launch Daemons.

Local Port Monitor Mitigation

Identify and block potentially malicious software that may persist in this manner by using whitelisting[[CiteRef::Beechey 2010]] tools capable of monitoring DLL loads by processes running under SYSTEM permissions.

Accessibility Features Mitigation

To use this technique remotely, an adversary must use it in conjunction with RDP. Ensure that Network Level Authentication is enabled to force the remote desktop session to authenticate before the session is created and the login screen displayed. It is enabled by default on Windows Vista and later.[[CiteRef::TechNet RDP NLA]]

If possible, use a Remote Desktop Gateway to manage connections and security configuration of RDP within a network.[[CiteRef::TechNet RDP Gateway]]

Identify and block potentially malicious software that may be executed by an adversary with this technique by using whitelisting[[CiteRef::Beechey 2010]] tools, like AppLocker,[[CiteRef::Windows Commands JPCERT]][[CiteRef::NSA MS AppLocker]] or Software Restriction Policies[[CiteRef::Corio 2008]] where appropriate.[[CiteRef::TechNet Applocker vs SRP]]

Bootkit Mitigation

Ensure proper permissions are in place to help prevent adversary access to privileged accounts necessary to perform this action. Use Trusted Platform Module technology and a secure or trusted boot process to prevent system integrity from being compromised.[[CiteRef::TCG Trusted Platform Module]][[CiteRef::TechNet Secure Boot Process]]

Access Token Manipulation Mitigation

Access tokens are an integral part of the security system within Windows and cannot be turned off. However, an attacker must already have administrator level access on the local system to make full use of this technique; be sure to restrict users and accounts to the least privileges they require to do their job.

Any user can also spoof access tokens if they have legitimate credentials. Follow mitigation guidelines for preventing adversary use of [[Technique/T1078|Valid Accounts]].

Also limit opportunities for adversaries to increase privileges by limiting [[Privilege Escalation]] opportunities.

Valid Accounts Mitigation

Take measures to detect or prevent techniques such as [[Technique/T1003|Credential Dumping]] or installation of keyloggers to acquire credentials through [[Technique/T1056|Input Capture]]. Limit credential overlap across systems to prevent access if account credentials are obtained. Ensure that local administrator accounts have complex, unique passwords across all systems on the network. Do not put user or admin domain accounts in the local administrator groups across systems unless they are tightly controlled and use of accounts is segmented, as this is often equivalent to having a local administrator account with the same password on all systems. Follow best practices for design and administration of an enterprise network to limit privileged account use across administrative tiers.[[CiteRef::Microsoft Securing Privileged Access]]. Audit domain and local accounts as well as their permission levels routinely to look for situations that could allow an adversary to gain wide access by obtaining credentials of a privileged account.[[CiteRef::TechNet Credential Theft]][[CiteRef::TechNet Least Privilege]]

Disabling Security Tools Mitigation

Ensure proper process, registry, and file permissions are in place to prevent adversaries from disabling or interfering with security services.

Query Registry Mitigation

Identify unnecessary system utilities or potentially malicious software that may be used to acquire information within the Registry, and audit and/or block them by using whitelisting[[CiteRef::Beechey 2010]] tools, like AppLocker,[[CiteRef::Windows Commands JPCERT]][[CiteRef::NSA MS AppLocker]] or Software Restriction Policies[[CiteRef::Corio 2008]] where appropriate.[[CiteRef::TechNet Applocker vs SRP]]

System Firmware Mitigation

Prevent adversary access to privileged accounts or access necessary to perform this technique. Check the integrity of the existing BIOS or EFI to determine if it is vulnerable to modification. Patch the BIOS and EFI as necessary. Use Trusted Platform Module technology.[[CiteRef::TCG Trusted Platform Module]]

Multiband Communication Mitigation

Network intrusion detection and prevention systems that use network signatures to identify traffic for specific adversary malware can be used to mitigate activity at the network level. Signatures are often for unique indicators within protocols and may be based on the specific protocol used by a particular adversary or tool, and will likely be different across various malware families and versions. Adversaries will likely change tool C2 signatures over time or construct protocols in such a way as to avoid detection by common defensive tools.[[CiteRef::University of Birmingham C2]]

Remote System Discovery Mitigation

Identify unnecessary system utilities or potentially malicious software that may be used to acquire information on remotely available systems, and audit and/or block them by using whitelisting[[CiteRef::Beechey 2010]] tools, like AppLocker,[[CiteRef::Windows Commands JPCERT]][[CiteRef::NSA MS AppLocker]] or Software Restriction Policies[[CiteRef::Corio 2008]] where appropriate.[[CiteRef::TechNet Applocker vs SRP]]

File and Directory Discovery Mitigation

File system activity is a common part of an operating system, so it is unlikely that mitigation would be appropriate for this technique. It may still be beneficial to identify and block unnecessary system utilities or potentially malicious software by using whitelisting[[CiteRef::Beechey 2010]] tools, like AppLocker,[[CiteRef::Windows Commands JPCERT]][[CiteRef::NSA MS AppLocker]] or Software Restriction Policies[[CiteRef::Corio 2008]] where appropriate.[[CiteRef::TechNet Applocker vs SRP]]

File System Permissions Weakness Mitigation

Use auditing tools capable of detecting file system permissions abuse opportunities on systems within an enterprise and correct them. Limit privileges of user accounts and groups so that only authorized administrators can interact with service changes and service binary target path locations. Toolkits like the PowerSploit framework contain PowerUp modules that can be used to explore systems for service file system permissions weaknesses.

Identify and block potentially malicious software that may be executed through abuse of file, directory, and service permissions by using whitelisting[[CiteRef::Beechey 2010]] tools, like AppLocker,[[CiteRef::Windows Commands JPCERT]][[CiteRef::NSA MS AppLocker]] that are capable of auditing and/or blocking unknown programs. Deny execution from user directories such as file download directories and temp directories where able.[[CiteRef::Seclists Kanthak 7zip Installer]]

Turn off UAC’s privilege elevation for standard users and installer detection for all users by modifying registry key <code>[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Policies\System]</code>to automatically deny elevation requests, add: <code>"ConsentPromptBehaviorUser"=dword:00000000</code>; to disable installer detection, add: <code>"EnableInstallerDetection"=dword:00000000</code>.[[CiteRef::Seclists Kanthak 7zip Installer]]

Service Execution Mitigation

Ensure that permissions disallow services that run at a higher permissions level from being created or interacted with by a user with a lower permission level. Also ensure that high permission level service binaries cannot be replaced or modified by users with a lower permission level.

Identify unnecessary system utilities or potentially malicious software that may be used to interact with Windows services, and audit and/or block them by using whitelisting[[CiteRef::Beechey 2010]] tools, like AppLocker,[[CiteRef::Windows Commands JPCERT]][[CiteRef::NSA MS AppLocker]] or Software Restriction Policies[[CiteRef::Corio 2008]] where appropriate.[[CiteRef::TechNet Applocker vs SRP]]

Communication Through Removable Media Mitigation

Disable Autorun if it is unnecessary.[[CiteRef::Microsoft Disable Autorun]] Disallow or restrict removable media at an organizational policy level if they are not required for business operations.[[CiteRef::TechNet Removable Media Control]]

Two-Factor Authentication Interception Mitigation

Remove smart cards when not in use. Protect devices and services used to transmit and receive out-of-band codes.

Identify and block potentially malicious software that may be used to intercept 2FA credentials on a system by using whitelisting[[CiteRef::Beechey 2010]] tools, like AppLocker,[[CiteRef::Windows Commands JPCERT]][[CiteRef::NSA MS AppLocker]] or Software Restriction Policies[[CiteRef::Corio 2008]] where appropriate.[[CiteRef::TechNet Applocker vs SRP]]

Plist Modification Mitigation

Prevent plist files from being modified by users by making them read-only.

Application Shimming Mitigation

There currently aren’t a lot of ways to mitigate